Skip to main content

The CONTSID Toolbox: A Software Support for Data-based Continuous-time Modelling

  • Chapter
Identification of Continuous-time Models from Sampled Data

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

This chapter describes the continuous-time system identification (CONTSID) toolbox for MATLAB®, which supports continuous-time (CT) transfer function and state-space model identification directly from regularly or irregularly time-domain sampled data, without requiring the determination of a discrete-time (DT) model. The motivation for developing the CONTSID toolbox was first to fill in a gap, since no software support was available to serve the cause of direct time-domain identification of continuous-time linear models but also to provide the potential user with a platform for testing and evaluating these data-based modelling techniques. The CONTSID toolbox was first released in 1999 [15]. It has gone through several updates, some of which have been reported at recent symposia [11, 12, 16]. The key features of the CONTSID toolbox can be summarised as follows:

  • it supports most of the time-domain methods developed over the last thirty years [17] for identifying linear dynamic continuous-time parametric models from measured input/output sampled data;

  • it provides transfer function and state-space model identification methods for single-input single-output (SISO) and multiple-input multiple-output (MIMO) systems, including both traditional and more recent approaches;

  • it can handle irregularly sampled data in a straightforward way;

  • it may be seen as an add-on to the system identification (SID) toolbox for MATLAB® [26]. To facilitate its use, it has been given a similar setup to the SID toolbox;

  • it provides a flexible graphical user interface (GUI) that lets the user analyse the experimental data, identify and evaluate models in an easy way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.J. Åström. Introduction to Stochastic Control Theory. Academic Press, New York, 1970.

    MATH  Google Scholar 

  2. K.J. Åström, P. Hagander, and J. Sternby. Zeros of sampled systems. Automatica, 20(1):31–38, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  3. M. Barberi-Heyob, P.-O. Véedrine, J.-L. Merlin, R. Millon, J. Abecassis, M.-F. Poupon, and F. Guillemin. Wild-type p53 gene transfer into mutated p53 HT29 cells improves sensitivity to photodynamic therapy via induction of apoptosis. International Journal of Oncology, 24:951–958, 2004.

    Google Scholar 

  4. T. Bastogne, H. Garnier, and P. Sibille. A PMF-based subspace method for continuous-time model identification. Application to a multivariable winding process. International Journal of Control, 74(2):118–132, 2001.

    Article  MATH  Google Scholar 

  5. T. Bastogne, H. Noura, P. Sibille, and A. Richard. Multivariable identification of a winding process by subspace methods for a tension control. Control Engineering Practice, 6(9):1077–1088, 1998.

    Article  Google Scholar 

  6. T. Bastogne, L. Tirand, M. Barberi-Heyob, and A. Richard. System identification of photosensitiser uptake kinetics in photodynamic therapy. 6th IFAC Symposium on Modelling and Control in Biomedical System, Reims, France, September 2006.

    Google Scholar 

  7. Y.C. Chao, C.L. Chen, and H.P. Huang. Recursive parameter estimation of transfer function matrix models via Simpson’s integrating rules. International Journal of Systems Science, 18(5):901–911, 1987.

    Article  MATH  Google Scholar 

  8. C.F. Chen and C.H. Hsiao. Time-domain synthesis via Walsh functions. IEE Proceedings, 122(5):565–570, 1975.

    Google Scholar 

  9. H. Dai and N.K. Sinha. Use of numerical integration methods, in N.K. Sinha and G.P. Rao (eds), Identification of Continuous-Time Systems. Methodology and Computer Implementation, pages 79–121, Kluwers Academic Publishers: Dordrecht, Holland, 1991.

    Google Scholar 

  10. H. Garnier. Continuous-time model identification of real-life processes with the CONTSID toolbox. 15th IFAC World Congress, Barcelona, Spain, July 2002.

    Google Scholar 

  11. H. Garnier, M. Gilson, and O. Cervellin. Latest developments for the MATLAB® CONTSID toolbox. 14th IFAC Symposium on System Identification, Newcastle, Australia, pages 714–719, March 2006.

    Google Scholar 

  12. H. Garnier, M. Gilson, and E. Huselstein. Developments for the MATLAB® CONTSID toolbox. 13th IFAC Symposium on System Identification, Rotterdam, The Netherlands, pages 1007–1012, August 2003.

    Google Scholar 

  13. H. Garnier, M. Gilson, P.C. Young, and E. Huselstein. An optimal IV technique for identifying continuous-time transfer function model of multiple input systems. Control Engineering Practice, 46(15):471–486, April 2007.

    Article  Google Scholar 

  14. L. Cuvillon, E. Laroche, H. Garnier, J. Gangloff, and M. de Mathelin. Continuous-time model identification of robot flexibilities for fast visual servoing. 14th IFAC Symposium on System Identification, Newcastle, Australia, pages 1264–1269, March 2006.

    Google Scholar 

  15. H. Garnier and M. Mensler. CONTSID: a continuous-time system identification toolbox for Matlab. 5th European Control Conference, Karlsruhe, Germany, September 1999.

    Google Scholar 

  16. H. Garnier and M. Mensler. The CONTSID toolbox: a MATLAB® toolbox for CONtinuous-Time System IDentification. 12th IFAC Symposium on System Identification, Santa Barbara, USA, June 2000.

    Google Scholar 

  17. H. Garnier, M. Mensler, and A. Richard. Continuous-time model identification from sampled data. Implementation issues and performance evaluation. International Journal of Control, 76(13):1337–1357, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  18. H. Garnier, P. Sibille, and T. Bastogne. A bias-free least squares parameter estimator for continuous-time state-space models. 36th IEEE Conference on Decision and Control, San Diego, USA, Vol. 2, pages 1860–1865, December 1997.

    Article  Google Scholar 

  19. H. Garnier, P. Sibille, H.L. NGuyen, and T. Spott. A bias-compensating least-squares method for continuous-time system identification via Poisson moment functionals. 10th IFAC Symposium on System Identification, Copenhagen, Denmark, pages 3675–3680, July 1994.

    Google Scholar 

  20. H. Garnier, P. Sibille, and A. Richard. Continuous-time canonical state-space model identification via Poisson moment functionals. 34th IEEE Conference on Decision and Control, New Orleans, USA, Vol. 2, pages 3004–3009, December 1995.

    Google Scholar 

  21. E. Huselstein and H. Garnier. An approach to continuous-time model identification from non-uniformly sampled data. 41st IEEE Conference on Decision and Control, Las Vegas, USA, December 2002.

    Google Scholar 

  22. I. Kollar. Frequency Domain System Identification Toolbox Users’s Guide. The Mathworks, Inc., Mass., 1994.

    Google Scholar 

  23. E.K. Larsson and T. Söderström. Identification of continuous-time AR processes from unevenly sampled data. Automatica, 38(4):709–718, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  24. L. Ljung. System Identification. Theory for the User. Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 1999.

    Google Scholar 

  25. L. Ljung. Initialisation aspects for subspace and output-error identification methods. European Control Conference, Cambridge, UK, September 2003.

    Google Scholar 

  26. L. Ljung. SID: System identification toolbox for MATLAB®. http://www.mathworks.com/access/helpdesk/help/toolbox/ident/ident.shtml, 2006.

    Google Scholar 

  27. K. Mahata and H. Garnier. Identification of continuous-time Box-Jenkins models with arbitrary time delay. Submitted to the 46th Conference on Decision and Control, New Orleans, USA, December 2007.

    Google Scholar 

  28. M. Mensler, H. Garnier, and E. Huselstein. Experimental comparison of continuous-time model identification methods on a thermal process. 12th IFAC Symposium on System Identification, Santa Barbara, USA, June 2000.

    Google Scholar 

  29. M. Mensler, K. Wada. Subspace method for continuous-time system identification. 32nd ISCIE International Symposium on Stochastic Systems Theory and Its Applications, Tottori, Japan, November 2000.

    Google Scholar 

  30. M. Mensler, H. Garnier, A. Richard, and P. Sibille. Comparison of sixteen continuous-time system identification methods with the CONTSID toolbox. 5th European Control Conference, Karlsruhe, Germany, September 1999.

    Google Scholar 

  31. M. Mensler, S. Joe, and T. Kawabe. Identification of a toroidal continuously variable transmission using continuous-time system identification methods. Control Engineering Practice, 14(1):45–58, January 2006.

    Article  Google Scholar 

  32. B.M. Mohan and K.B. Datta. Analysis of time-delay systems via shifted Chebyshev polynomials of the first and second kinds. International Journal of Systems Science, 19(9):1843–1851, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  33. P.N. Paraskevopoulos. System analysis and synthesis via orthogonal polynomial series and Fourier series. Mathematics and Computers in Simulation, 27:453–469, 1985.

    Article  MathSciNet  Google Scholar 

  34. A.E. Pearson and Y. Shen. Weighted least squares / MFT algorithms for linear differential system identification. 32nd IEEE Conference on Decision and Control, San Antonio, USA, pages 2032–2037, 1993.

    Google Scholar 

  35. M. Djamai, E. Tohme, R. Ouvrard, and S. Bachir. Continuous-time model identification using reinitialized partial moments. Application to power amplifier modeling. 14th IFAC Symposium on System Identification, Newcastle, Australia, March 2006.

    Google Scholar 

  36. G.P. Rao and H. Garnier. Numerical illustrations of the relevance of direct continuous-time model identification. 15th IFAC World Congress, Barcelona, Spain, July 2002.

    Google Scholar 

  37. G.P. Rao and H. Garnier. Identification of continuous-time models: direct or indirect? Invited semi-plenary paper for the XV International Conference on Systems Science, Wroclaw, Poland, September 2004.

    Google Scholar 

  38. G.P. Rao and H. Unbehauen, Identification of continuous-time systems, IEE Proceedings-Control Theory and Applications, 153(2):185–220, March 2006.

    Article  Google Scholar 

  39. S. Sagara and Z.Y. Zhao. Numerical integration approach to on-line identification of continuous-time systems. Automatica, 26(1):63–74, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  40. J. Schoukens, R. Pintelon, and H. Van Hamme. Identification of linear dynamic systems using piecewise constant excitations: use, misuse and alternatives. Automatica, 30(7):1953–1169, 1994.

    Article  Google Scholar 

  41. T. Söderström and P. Stoica. System Identification. Series in Systems and Control Engineering. Prentice Hall, Englewood Cliffs, 1989.

    MATH  Google Scholar 

  42. H. Unbehauen and G.P. Rao. Identification of Continuous Systems. Systems and control series. North-Holland, Amsterdam, 1987.

    MATH  Google Scholar 

  43. H. Unbehauen and G.P. Rao. Identification of continuous-time systems: a tutorial. 11th IFAC Symposium on System Identification, Kitakyushu, Japan, Vol. 3, pages 1023–1049, July 1997.

    Google Scholar 

  44. P. Van Overschee and B. De Moor. Subspace Identification for Linear Systems-Theory, Implementation, Applications. Kluwer Academic Publishers, Boston, USA, 1996.

    MATH  Google Scholar 

  45. P.E. Wellstead. An instrumental product moment test for model order estimation. Automatica, 14:89–91, 1978.

    Article  Google Scholar 

  46. P.C. Young. Recursive Estimation and Time-series Analysis. Springer-Verlag, Berlin, 1984.

    MATH  Google Scholar 

  47. P.C. Young. Recursive estimation, forecasting and adaptive control. in C.T. Leondes (ed), Control and Dynamic Systems: Advances in Theory and Applications, pages 119–166, Vol 31, Academic Press, 1989.

    Google Scholar 

  48. P.C. Young. Data-based mechanistic modeling of engineering systems. Journal of Vibration and Control, 4:5–28, 1998.

    Article  Google Scholar 

  49. P.C. Young. The data-based mechanistic approach to the modelling, forecasting and control of environmental systems. Annual Reviews in Control, 30:169–182, 2006.

    Article  Google Scholar 

  50. P.C. Young. The Refined Instrumental Variable (RIV) method: unified estimation of discrete and continuous-time transfer function models. Journal Européeen des Systèmes Automatisées, in press, 2008.

    Google Scholar 

  51. P.C. Young and H. Garnier. Identification and estimation of continuous-time data-based mechanistic (DBM) models for environmental systems. Environmental Modelling and Software, 21(8):1055–1072, August 2006.

    Article  Google Scholar 

  52. P.C. Young and A.J. Jakeman. Refined instrumental variable methods of time-series analysis: Part III, extensions. International Journal of Control, 31:741–764, 1980.

    Article  MATH  Google Scholar 

  53. P.C. Young, A.J. Jakeman, and R. McMurtries. An instrumental variable method for model order identification. Automatica, 16:281–296, 1980.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Garnier, H., Gilson, M., Bastogne, T., Mensler, M. (2008). The CONTSID Toolbox: A Software Support for Data-based Continuous-time Modelling. In: Garnier, H., Wang, L. (eds) Identification of Continuous-time Models from Sampled Data. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-84800-161-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-161-9_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-160-2

  • Online ISBN: 978-1-84800-161-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics