Skip to main content

Refined Instrumental Variable Identification of Continuous-time Hybrid Box-Jenkins Models

  • Chapter
Identification of Continuous-time Models from Sampled Data

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

This chapter describes and evaluates a statistically optimal method for the identification and estimation3 of continuous-time (CT) hybrid Box-Jenkins (BJ) transfer function models from discrete-time, sampled data. Here, the model of the basic dynamic system is estimated in continuous-time, differential equation form, while the associated additive noise model is estimated as a discrete-time, autoregressive moving average (ARMA) process. This refined instrumental variable method for continuous-time systems (RIVC) was first developed in 1980 by Young and Jakeman [52] and its simplest embodiment, the simplified RIVC (SRIVC) method, has been used successfully for many years, demonstrating the advantages that this stochastic formulation of the continuous-time estimation problem provides in practical applications (see, e.g., some recent such examples in [16, 34, 40, 45, 48]).

The statistical meaning of these terms will be used here, where ‘identification’ is taken to mean the specification of an identifiable model structure and ‘estimation’ relates to the estimation of the parameters that characterise this identified model structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Bastogne, H. Garnier, and P. Sibille. A PMF-based subspace method for continuous-time model identification. Application to a multivariable winding process. International Journal of Control, 74(2):118–132, 2001.

    Article  MATH  Google Scholar 

  2. G.E.P. Box and G.M. Jenkins. Time Series Analysis Forecasting and Control. Holden-Day: San Francisco, 1970.

    MATH  Google Scholar 

  3. H. Garnier, M. Gilson, P.C. Young, and E. Huselstein. An optimal IV technique for identifying continuous-time transfer function model of multiple input systems. Control Engineering Practice, 15(4):471–486, 2007.

    Article  Google Scholar 

  4. H. Garnier, M. Mensler, and A. Richard. Continuous-time model identification from sampled data. Implementation issues and performance evaluation. International Journal of Control, 76(13):1337–1357, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Gilson, H. Garnier, P.C. Young, and P. Van den Hof. A refined IV method for closed-loop system identification. 14th IFAC Symposium on System Identification, Newcastle, Australia, pages 903–908, March 2006.

    Google Scholar 

  6. A.J. Jakeman, L.P. Steele, and P.C. Young. Instrumental variable algorithms for multiple input systems described by multiple transfer functions. IEEE Transactions on Systems, Man, and Cybernetics, SMC-10:593–602, 1980.

    Article  Google Scholar 

  7. A.J. Jakeman and P.C. Young. Refined instrumental variable methods of time-series analysis: Part II, multivariable systems. International Journal of Control, 29:621–644, 1979.

    Article  MATH  Google Scholar 

  8. A.J. Jakeman and P.C. Young. On the decoupling of system and noise model parameter estimation in time-series analysis. International Journal of Control, 34:423–431, 1981.

    Article  Google Scholar 

  9. A.J. Jakeman and P.C. Young. Advanced methods of recursive time-series analysis. International Journal of Control, 37:1291–1310, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  10. A.J. Jarvis, P.C. Young, D.T Leedal, and A. Chotai. An incremental carbon emissions strategy for the global carbon cycle using state variable feedback control design. Avoiding Dangerous Climate Change: International Symposium on Stabilisation of Greenhouse Gases, Exeter, UK, pages 45–49, Meteorological Office, 2005.

    Google Scholar 

  11. L. Ljung. System Identification. Theory for the User. Prentice Hall, Upper Saddle River, 2nd edition, 1999.

    Google Scholar 

  12. L. Ljung. Initialisation aspects for subspace and output-error identification methods. European Control Conference, Cambridge, UK, 2003.

    Google Scholar 

  13. K. Mahata and H. Garnier. Identification of continuous-time errors-in-variables models. Automatica, 46(9):1477–1490, 2006.

    Article  MathSciNet  Google Scholar 

  14. R.H. Middleton and G.C. Goodwin. Digital Control and Estimation: a Unified Approach. Prentice Hall, Englewood Cliffs, N.J., 1990.

    MATH  Google Scholar 

  15. D.A. Pierce. Least squares estimation in dynamic disturbance time-series models. Biometrika, 5:73–78, 1972.

    Article  MathSciNet  Google Scholar 

  16. L. Price, P.C. Young, D. Berckmans, K. Janssens, and J. Taylor. Data-based mechanistic modelling and control of mass and energy transfer in agricultural buildings. Annual Reviews in Control, 23:71–82, 1999.

    Google Scholar 

  17. G.P. Rao and H. Garnier. Identification of continuous-time systems: direct or indirect? Systems Science, 30(3):25–50, 2004.

    MATH  MathSciNet  Google Scholar 

  18. G.P. Rao and H. Garnier. Numerical illustrations of the relevance of direct continuous-time model identification. 15th IFAC World Congress, Barcelona, Spain, July 2002.

    Google Scholar 

  19. T. Söderström and P. Stoica. Instrumental Variable Methods for System Identification. Springer Verlag, New York, 1983.

    MATH  Google Scholar 

  20. V. Solo. Time Series Recursions and Stochastic Approximation. PhD thesis, Australian National University, Canberra, Australia, 1978.

    Google Scholar 

  21. K. Steiglitz and L.E. McBride. A technique for the identification of linear systems. IEEE Transactions on Automatic Control, 10:461–464, October 1965.

    Article  Google Scholar 

  22. P. Stoica and T. Söderström. The Steiglitz-McBride identification algorithms revisited. Convergence analysis and accuracy aspects. IEEE Transactions on Automatic Control, AC-26:712–717, 1981.

    Article  Google Scholar 

  23. S. Thil and H. Garnier and M. Gilson Third-order cumulants based methods for continuous-time errors-in-variables model identification. Automatica, 44(3), 2008.

    Google Scholar 

  24. P.E. Wellstead. An instrumental product moment test for model order estimation. Automatica, 14:89–91, 1978.

    Article  Google Scholar 

  25. P.C. Young. In flight dynamic checkout-a discussion. IEEE Transactions on Aerospace, AS2(3):1106–1111, 1964.

    Google Scholar 

  26. P.C. Young. The determination of the parameters of a dynamic process. Radio and Electronic Engineering (Journal of IERE), 29:345–361, 1965.

    Google Scholar 

  27. P.C. Young. Some observations on instrumental variable methods of time-series analysis. International Journal of Control, 23:593–612, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  28. P.C. Young. Parameter estimation for continuous-time models-a survey. Automatica, 17(1):23–39, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  29. P.C. Young. Recursive Estimation and Time-Series Analysis. Springer-Verlag, Berlin, 1984.

    MATH  Google Scholar 

  30. P.C. Young. Recursive estimation, forecasting and adaptive control. In C.T. Leondes (ed), Control and Dynamic Systems, pages 119–166. Academic Press: San Diego, USA, 1989.

    Google Scholar 

  31. P.C. Young. Data-based mechanistic modeling of engineering systems. Journal of Vibration and Control, 4:5–28, 1998.

    Article  Google Scholar 

  32. P.C. Young. Data-based mechanistic modeling of environmental, ecological, economic and engineering systems. Journal of Environmental Modelling and Software, 13:105–122, 1998.

    Article  Google Scholar 

  33. P.C. Young. Data-based mechanistic modelling, generalised sensitivity and dominant mode analysis. Computer Physics Communications, 117:113–129, 1999.

    Article  Google Scholar 

  34. P.C. Young. Identification and estimation of continuous-time hydrological models from discrete-time data. In B. Webb, N. Arnell, C. Onf, N. MacIntyre, R. Gurney, and C. Kirby, (eds), Hydrology: Science and Practice for the 21st Century, Vol. 1, pages 406–413. British Hydrological Society: London, 2004.

    Google Scholar 

  35. P.C. Young. The data-based mechanistic approach to the modelling, forecasting and control of environmental systems. Annual Reviews in Control, 30:169–182, 2006.

    Article  Google Scholar 

  36. P.C. Young. Data-based mechanistic modelling and river flow forecasting. 14th IFAC Symposium on System Identification, Newcastle, Australia, pages 756–761, March 2006.

    Google Scholar 

  37. P.C. Young. An instrumental variable approach to ARMA model identification and estimation. 14th IFAC Symposium on System Identification, Newcastle, Australia, pages 410–415, March 2006.

    Google Scholar 

  38. P.C. Young. The refined instrumental variable method: unified estimation of discrete and continuous-time transfer function models. Journal Européen des Systèmes Automatisés, 2008.

    Google Scholar 

  39. P.C. Young, A. Chotai, and W. Tych. Identification, estimation and control of continuous-time systems described by delta operator models. In Identification of Continuous-Time Systems. Methodology and computer implementation, Kluwers Academic Publishers: Dordrecht, N.K. Sinha and G.P. Rao (eds), pages 363–418, 1991.

    Google Scholar 

  40. P.C. Young and H. Garnier. Identification and estimation of continuous-time, data-based mechanistic models for environmental systems. Environmental Modelling & Software, 21:1055–1072, 2006.

    Article  Google Scholar 

  41. P.C. Young, H. Garnier, and M. Gilson. An optimal instrumental variable approach for identifying hybrid continuous-time Box-Jenkins models. 14th IFAC Symposium on System Identification, Newcastle, Australia, pages 225–230, March 2006.

    Google Scholar 

  42. P.C. Young and A.J. Jakeman. Refined instrumental variable methods of time-series analysis: Part I, SISO systems. International Journal of Control, 29:1–30, 1979.

    Article  MATH  Google Scholar 

  43. P.C. Young and A.J. Jakeman. Refined instrumental variable methods of time-series analysis: Part III, extensions. International Journal of Control, 31:741–764, 1980.

    Article  MATH  Google Scholar 

  44. P.C. Young, A.J. Jakeman, and R. McMurtrie. An instrumental variable method for model order identification. Automatica, 16:281–296, 1980.

    Article  MATH  Google Scholar 

  45. P.C. Young and S. Parkinson. Simplicity out of complexity. In M.B. Beck (ed), Environmental Foresight and Models: A Manifesto, pages 251–294. Elsevier: Oxford, UK, 2002.

    Chapter  Google Scholar 

  46. P.C. Young, S. Parkinson, and M.J. Lees. Simplicity out of complexity: Occam’s razor revisited. Journal of Applied Statistics, 23:165–210, 1996.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Young, P.C., Garnier, H., Gilson, M. (2008). Refined Instrumental Variable Identification of Continuous-time Hybrid Box-Jenkins Models. In: Garnier, H., Wang, L. (eds) Identification of Continuous-time Models from Sampled Data. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-84800-161-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-161-9_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-160-2

  • Online ISBN: 978-1-84800-161-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics