Skip to main content

Passivity-based Stability of Interconnection Structures

  • Conference paper
Recent Advances in Learning and Control

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 371))

Abstract

In the 1970s, Vidyasagar developed an approach to the study of stability of interconnected systems. This paper revisits this approach and shows how it allows one to interpret, and considerably extend, a classical condition used in mathematical biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vidyasagar, M.: Input-Output Analysis of Large Scale Interconnected Systems. Springer, Berlin (1981)

    MATH  Google Scholar 

  2. Sundareshan, M.K., Vidyasagar, M.: l 2-stability of large-scale dynamical systems: Criteria via positive operator theory. IEEE Transactions on Automatic Control AC-22, 396–400 (1977)

    Google Scholar 

  3. Moylan, P.J., Hill, D.J.: Stability criteria for large-scale systems. IEEE Trans. Autom. Control 23(2), 143–149 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  4. Arcak, M., Sontag, E.: Diagonal stability of a class of cyclic systems and its connection with the secant criterion. Automatica 42(9), 1531–1537 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Arcak, M., Sontag, E.D.: A passivity-based stability criterion for a class of interconnected systems and applications to biochemical reaction networks. Mathematical Biosciences and Engineering (to appear, 2007) (preprint: arxiv0705.3188vl [q-bio])

    Google Scholar 

  6. Sontag, E.D.: Passivity gains and the “secant condition” for stability. Systems Control Lett. 55(3), 177–183 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Tyson, J.J., Othmer, H.G.: The dynamics of feedback control circuits in biochemical pathways. In: Rosen, R., Snell, F.M. (eds.) Progress in Theoretical Biology, vol. 5, pp. 1–62. Academic Press, London (1978)

    Google Scholar 

  8. Thron, CD.: The secant condition for instability in biochemical feedback control — Parts I and II. Bulletin of Mathematical Biology 53, 383–424 (1991)

    MATH  Google Scholar 

  9. Goodwin, B.C.: Oscillatory behavior in enzymatic control processes. Adv. Enzyme Reg. 3, 425–439 (1965)

    Article  Google Scholar 

  10. Hastings, S.P., Tyson, J., Webster, D.: Existence of periodic orbits for negative feedback cellular control systems. Journal of Differential Equations 25(1), 39–64 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  11. Glass, L., Pasternack, J.S.: Prediction of limit cycles in mathematical models of biological control systems. Bulletin of Mathematical Biology, 27–44 (1978)

    Google Scholar 

  12. Morales, M., McKay, D.: Biochemical oscillations in controlled systems. Biophys. J. 7, 621–625 (1967)

    Article  Google Scholar 

  13. Stephanopoulos, G.N., Aristidou, A.A., Nielsen, J.: Metabolic Engineering Principles and Methodologies. Academic Press, London (1998)

    Google Scholar 

  14. Kholodenko, B.N.: Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. Eur. J. Biochem 267, 1583–1588 (2000)

    Article  Google Scholar 

  15. Chitour, Y., Grognard, F., Bastin, G.: Equilibria and stability analysis of a branched metabolic network with feedback inhibition. Networks and Heterogeneous Media 1, 219–239 (2006)

    MATH  MathSciNet  Google Scholar 

  16. Santos, S.D.M., Verveer, P.J., Bastiaens, P.I.H.: Growth factor induced MAPK network topology shapes Erk response determining PC-12 cell fate. Nature Cell Biology 9, 324–330 (2007)

    Article  Google Scholar 

  17. Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. Society for Industrial and Applied Mathematics, Classics in Applied Mathematics, Philadelphia (1994)(Originally published by Academic Press, New York, 1979)

    Google Scholar 

  18. Sontag, E.D.: Some new directions in control theory inspired by systems biology. IET Systems Biology 1, 9–18 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sontag, E.D., Arcak, M. (2008). Passivity-based Stability of Interconnection Structures. In: Blondel, V.D., Boyd, S.P., Kimura, H. (eds) Recent Advances in Learning and Control. Lecture Notes in Control and Information Sciences, vol 371. Springer, London. https://doi.org/10.1007/978-1-84800-155-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-155-8_14

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-154-1

  • Online ISBN: 978-1-84800-155-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics