Skip to main content

Optimal Cost Haptic Devices for Driving Simulators

  • Chapter
  • First Online:

Abstract

Driving simulators reproduce actual driving conditions. The main purpose of these systems is to teach trainees how to drive under safe and controlled conditions. In order to have realistic training sessions, simulator manufacturers tend to use controls found in the actual vehicle under simulation. This paper presents two haptic devices that use force control to accurately reproduce the behaviour of a lever and gear shift. The presented devices are advantageous in their compact and versatile design, reaching an optimal balance between low cost and high performance. The devices have been tested by real drivers, and implemented in commercialized train, and bus/truck driving simulators.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Woon-Sung Lee, J.-H. Kim, and J.-H. Cho. (1998) A Driving Simulator as a Virtual Reality Tool. in IEEE International Conference on Robotics and Automation.. Leuven, Belgium.

    Google Scholar 

  2. Basdogan, C., et al., (2004) Haptics in Minimally Invasive Surgical Simulation and Training. IEEE Computer Graphics and Applications,.24(2): p. 56-64.

    Article  Google Scholar 

  3. Jorgensen, C., K. Wheeler, and S. Stepniewski. (2000) Bioelectric Control of a 757 Class High Fidelity Aircraft Simulation. in World Automation Congress.. Wailea Maui, Hawaii.

    Google Scholar 

  4. Ferrazzin, D., F. Salsedo, and M. Bergamasco. (1999) The MORIS Simulator. in Eighth International Workshop on Robot and Human Interactive Communication (RO-MAN ’99).. Pisa, Italy: IEEE.

    Google Scholar 

  5. Madhani, A.J., G. Niemeyer, and J.K. Salisbury. (1998) The Black Falcon: A Teleoperated Surgical Instrument for Minimally Invasive Surgery. in International Conference on Intelligent Robots and Systems.. Victoria B.C., Canada: IEEE/RSJ.

    Google Scholar 

  6. Bengoechea, E., E. Sánchez, and J.J.Gil. (2006) Palanca Háptica de Bajo Coste para Simuladores de Conducción y Entrenamiento. in VII Congreso Internacional de Interacción Persona-Máquina.. Puertollano, Ciudad Real, Spain: Universidad Castilla la Mancha.

    Google Scholar 

  7. Angerilli, M., et al. (2001) Haptic Simulation of an Automotive Manual Gearshift. in International Workshop on Robot and Human Interactive Communication. 2001: IEEE.

    Google Scholar 

  8. Frisoli, A., C.A. Avizzano, and M. Bergamasco. Simulation of a Manual Gearshift with a 2 DOF Force-Feedback Joystick. in International Conference on Robotics & Automation.. Seoul, Korea: IEEE.

    Google Scholar 

  9. Brown, J.M. and J.E. Colgate. (1994) Physics-Based Approach to Haptic Display. in ISMRC 94, Topical Workshop on Virtual Reality.. Los Alamitos, Calofornia.

    Google Scholar 

  10. Hunt, K.H. and F.R.E. Crossley, (1975) Coefficient of Restitution Interpreted as Damping in Vibroimpact. ASME Journal of Applied Mechanics,: p. 440-445.

    Google Scholar 

  11. Hwang, J.D., M.D. Williams, and G. Niemeyer. (2004) Toward Event-Based Haptics: Rendering Contact Using Open-Loop Force Pulses. in Haptics Symposium 2004.. Chicago, Illinois.

    Google Scholar 

  12. Rosenberg, L.B. and B.D. Adelstein. (1993) Perceptual Decomposition of Virtual Haptic Surfaces. in Proceedings IEEE 1993 Symposium on Research Frontiers in Virtual Reality. San José CA.

    Google Scholar 

  13. Salcudean, S.E. and T.D. Vlaar, (1997) On the Emulation of Stiff Walls and Static Friction with a Magnetically Levitated Input/Output Device. ASME, Journal of Dynamic Systems, Measurement, and Control,.119(1): p. 127-132.

    Article  MATH  Google Scholar 

  14. Salcudean, S.E. and T.D. Vlaar, (1994) On the Emulation of Stiff Walls and Static Friction with a Magnetically Levitated Input/Output Device. ASME, Journal of Dynamic Systems, Measurement, and Control,.119(1): p. 127-132.

    Article  Google Scholar 

  15. Adachi, Y., T. Kumano, and K. Ogino. (1995) Intermediate Representation for Stiff Virtual Objects. in IEEE Virtual Reality Annual International Symposium..

    Google Scholar 

  16. Minsky, M., et al. (1990) Feeling and Seeing: Issues in Force Display. in 1990 Symposium on Interactive 3D graphics.. Snowbird, Utah, United States.

    Google Scholar 

  17. Basdogan, C., C.-H. Ho, and M.A. Srinivasan. (1997) A Ray-Based Haptic Rendering Technique for Displaying Shape and Texture of 3-D Objects in Virtual Environments. in ASME Dynamic Systems and Control Division.. Dallas, TX.

    Google Scholar 

  18. Kim, L., et al. (2002) An Implicit Based Haptic Rendering Technique. in IEEE/RSJ IROS..

    Google Scholar 

  19. Otaduy, M.A. and M.C. Lin. (2004) A Perceptually-Inspired Force Model for Haptic Texture Rendering. in 1st Symposium on Applied perception in graphics and visualization.. Los Angeles, California.

    Google Scholar 

  20. Otaduy, M.A., et al. (2004) Haptic Display of Interaction between Textured Models. in Visualization Conference.. Austin, Tx: IEEE.

    Google Scholar 

  21. Hogan, N., (1985) Impedance control: an approach to manipulation: Part I – theory, Part II – implementation, Part III – applications. Journal of Dynamic Systems, Measurement and Control.

    Google Scholar 

  22. Massie, T.H. and K. Salisbury. (1994) The PHANTOM Haptic Interface: A Device for Probing Virtual Objects. in ASME Winter Annual Meeting, Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems.. Chicago, IL.

    Google Scholar 

  23. Tan, H., et al. (1994) Human Factors for the Design of Force Reflecting Haptic Interfaces. in ASME WAM.. New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London

About this chapter

Cite this chapter

Bengoechea, E., Sánchez, E., Savall, J. (2009). Optimal Cost Haptic Devices for Driving Simulators. In: Redondo, M., Bravo, C., Ortega, M. (eds) Engineering the User Interface. Springer, London. https://doi.org/10.1007/978-1-84800-136-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-136-7_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-135-0

  • Online ISBN: 978-1-84800-136-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics