Skip to main content

Engineering Process Control: A Review

  • Chapter

Abstract

The chapter provides an overview of engineering process control (EPC). The need for EPC and earlier misconceptions about process adjustments are discussed. A brief overview of time series is provided to model process disturbances. Optimal feedback controllers considering the various costs involved such as off-target costs, adjustment costs and sampling costs are discussed. Further, optimal control strategies in the case of short production runs and adjustment errors are also discussed. This is followed by an overview of run-to-run control in the semiconductor industry. First the most widely used single-EWMA controllers are detailed and then their weakness and the need for double EWMA controllers are discussed. Double-EWMA is detailed and its transient and steady state performances are also discussed. Further, the need for variable EWMA and initial intercept iteratively adjusted (IIIA) controllers are pointed out and elaborated on. The chapter then addresses some criticism of EPC and responses to it. Finally the integration of SPC and EPC for greater benefits is discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Deming WE.. Out of the crisis. Cambridge, MA: Center for Advanced Engineering Study MIT, 1986

    Google Scholar 

  2. MacGregor JF. A different view of funnel experiment. Journal of Quality Technology 1990; 22:255–259.

    Google Scholar 

  3. Box GEP, Luceno A. Statistical control by monitoring and feedback adjustment. New York: Wiley, 1997.

    MATH  Google Scholar 

  4. Box GEP, Jenkins GM. Some statistical aspects of adaptive optimization and control. Royal Statistical Society Journal 1962; 24(B): 297–343.

    Google Scholar 

  5. Box GEP, Jenkins GM. Mathematical models for adaptive control and optimization. AI Chem. E Symposium series 1965; (4): 61–68.

    Google Scholar 

  6. Box GEP, Jenkins GM. Time series analysis: forecasting and control. Holden-Day, San Fransisco, 1970.

    MATH  Google Scholar 

  7. Box GEP, Jenkins GM, MacGregor JF. Some recent advances in forecasting and control, Part II. Applied Statistics 1974; 23(2):128–179.

    Article  MathSciNet  Google Scholar 

  8. Chartfield C. The analysis of time series: An introduction. London: Chapman and Hall, 1989.

    Google Scholar 

  9. Box GEP, Jenkins GM, Reinsel GC. Time series analysis, forecasting and control. Upper Saddle River, NJ: Prentice-Hall, 1994.

    MATH  Google Scholar 

  10. Montogmery DC, Johnson LA, Gardiner JS. Forecasting and time series analysis. New York: McGraw Hill, 1990.

    Google Scholar 

  11. Ljung L System identification: Theory for users 2nd edition. Upper Saddle River, NJ.: Prentice Hall, 1999.

    Google Scholar 

  12. Ljung L, Soderstrom T. Theory and practice of recursive identification. Cambridge, MA: MIT Press, 1983

    MATH  Google Scholar 

  13. Richard A Davies, Peter J Brockwell. Time series: Theory and methods. Berlin: Springer, 1996.

    MATH  Google Scholar 

  14. Cressie. A graphical procedure for determining non stationary in time series. J Of American Statistical Association 1998; 83:1108–1116.

    Article  MathSciNet  Google Scholar 

  15. Box GEP, Kramer T. Statistical process monitoring and feedback adjustment: A discussion. Technometrics 1992;34:251–275.

    Article  MathSciNet  Google Scholar 

  16. Luceno A. Performance of discrete feedback adjustment scheme with dead band under stationary v/s nonstationary stochastic disturbance. Technometrics 1998; 40(3):223–233.

    Article  Google Scholar 

  17. Box GEP, Hunter WG, Hunter JS. Statistics for experimenters, an introduction to design, analysis and model building. New York: Wiley, 1978.

    Google Scholar 

  18. Box GEP. Feedback control by manual adjustment. Quality Engineering 1991a; 4:143–151.

    Article  Google Scholar 

  19. Box GEP, Jenkins GM. Further contributions to adaptive optimization and control: Simultaneous estimation of dynamics: Non-zero costs. Bulletin of International Statistical Institute 1963; 34:943–974.

    MathSciNet  Google Scholar 

  20. Box GEP, Luceno A. Sampling interval and action limit for discrete feedback adjustment. Technometrics 1994; 36(4): 369–378.

    Article  MATH  Google Scholar 

  21. Kramer T Process control from economic point of view. University of Wisconsin-Madison, 1989.

    Google Scholar 

  22. Crowder SV. An SPC model for short production runs: Minimizing expected costs. Technometrics 1992; 34: 64–73.

    Article  MATH  MathSciNet  Google Scholar 

  23. Jensen KL, Vardeman SB. Optimal adjustment in the presence of deterministic process drift and random adjustment error. Technometrics 1993; 35:376–389.

    Article  MATH  MathSciNet  Google Scholar 

  24. Grubbs FE. An optimal procedure for setting machines or adjusting processes. Journal of Quality technology 1954 /1983; 15(4):186–189.

    Google Scholar 

  25. Sullo P, Vandevan M. Optimal adjustment strategies for a process with run to run variation and 0–1 quality loss. IIE Trans. 1999; 31:1135–1145.

    Google Scholar 

  26. Pan R., Del Castillo E. Scheduling methods for the statistical setup adjustment problem. International Journal of Productions Research 2003; (41): 1467–1481

    Article  Google Scholar 

  27. Del Castillo, Hurwitz A. Run to run process control: A review and some extensions. Journal of Quality Technology 1997; 33(2):153–166.

    Google Scholar 

  28. Moyne J, Del Castillo E, Hurwitz A. Run to run control in semiconductor manufacturing. CRC Boca Rotan Washington D.C, 2001.

    Google Scholar 

  29. Ingolfsson A, Sachs E. Stability and sensitivity of a EWMA controller. Journal of Quality Technology 1993; 25: 271–287.

    Google Scholar 

  30. Butler SW, Stephani JA. Supervisory run to run control of a polysilicon gate etche using in situ ellipsometry. IEEE Trans. Semiconductor Manufact. 1994; 7(2):193–201.

    Article  Google Scholar 

  31. Del Castillo E. Statistical process adjustment for quality control. New York: Wiley, 2002.

    MATH  Google Scholar 

  32. Del Castillo E. Long run and transient analysis of a double EWMA feedback controller. IIE Transactions 1999; 31(12):1157–1169.

    Google Scholar 

  33. Tseng ST, Chou RJ, Lee SP. Statistical design of double EWMA controller. Applied Stochastic Models in Business and Industry 2002b; 18(3):313–322.

    Article  MATH  MathSciNet  Google Scholar 

  34. Tseng ST, Hsu NJ. Sample size determination for achieving asymptotic stability of a double EWMA control scheme. IEEE Trans. Semiconductor Manufact. 2005; 18(1):104–111.

    Article  MathSciNet  Google Scholar 

  35. Del Castillo E. Some properties of EWMA feedback quality adjustment scheme for drifting disturbances. Journal of Quality Technology 2001a; 29(2):184–196.

    Google Scholar 

  36. Tseng ST, Song W, Chang Y. An initial intercept iteratively adjusted controller: An enhanced double EWMA feedback control. IEEE Trans. Semiconductor Manufact. 2005; 18(3):448–457.

    Article  Google Scholar 

  37. Tseng ST, Yeh AB, Tsung. FG, Chan Y. A study of variable EWMA controller. IEEE Trans. Semiconductor Manufact. 2003; 16(4):633–643.

    Article  Google Scholar 

  38. Patterson OD, Dong X, Pramod P, Nair VN. Methodology for feedback variable selection for control of semiconductor manufacturing processes-Part 1: Analytical and simulation resutsl. IEEE Trans. Semiconductor Manufact. 2003; Nov,16(4):575–587.

    Article  Google Scholar 

  39. Patterson OD, Dong X, Pramod P, Nair VN. Methodology for feedback variable selection for control of semiconductor manufacturing processes-Part 2: Application to reactive ion etching. IEEE Trans. Semiconductor Manufact. 2003; Nov.,16(4):588–597.

    Article  Google Scholar 

  40. Firth SK, Campbell WJ, Toprac A, Edgar TF. Just-in-time adaptive disturbance estimation for run to run control of semiconductor processes. IEEE Trans. Semiconductor Manufact. 2006; Aug., 19(3):298–315.

    Article  Google Scholar 

  41. Chen A, Guo R. Age based double EWMA controllers and its application to CMP processes. IEEE Trans. Semiconductor Manufact. 2001; Feb.,14(1):11–19.

    Article  MATH  Google Scholar 

  42. Tseng ST, Chou. R, Lee S. A study on a multivariate EWMA controller. IIE Trans. 2002; 34: 541–549.

    Google Scholar 

  43. Hunter JS. Beyond the Shewhart SPC paradigm. Dept of Statistics Southern Methodist University Dallas, 1994.

    Google Scholar 

  44. MacGregor JF. Optimal choice of the sampling interval for discrete process control. Technometrics 1976; 18(2):151–160.

    Article  MATH  MathSciNet  Google Scholar 

  45. Vander WSA, Tucker WT, Faltin FW, Doganaksoy N. Algorithmic statistical process control: Concepts and applications. Technometrics 1992; 34(3):286–297.

    Article  Google Scholar 

  46. Vander WSA, Vaderman SB. Discussion: integrating SPC and APC. Technometrics 1992; 34(3):278–281.

    Article  Google Scholar 

  47. Tucker WT, Faltin FW, Vander WSA. ASPC: an elaboration. Technometrics 1993;35(4):363–375.

    Article  Google Scholar 

  48. Jing W. SPC monitoring of MMSE-and PI-controlled processes. Journal of Quality Technology 2002; 34(4):.384–398.

    Google Scholar 

  49. Box GEP, Kramer T. Statistical process control and automatic process control-a discussion. report 41. Center for Quality and Productivity Improvement. Uni. of Wisconsin Madison, 1990.

    Google Scholar 

  50. Tsung F, Shi J, Wu CFJ., Joint monitoring of PID controlled processes. Journal of Quality Technology 1999; 31:275–285.

    Google Scholar 

  51. Jiang W. A joint SPC monitoring scheme for APC controlled processes. IIE Transactions 2004;36:1201–1210.

    Article  Google Scholar 

  52. Jiang W, Shu L, Tsung F. A comparative study of joint monitoring schemes for APC processes. Quality and Reliability Engineering International 2006; 22:939–952.

    Article  Google Scholar 

  53. Hayter AJ, Tsui KL. Identification and quantification in multivariate quality control problems. Journal of Quality Technology 1994; 26:197–208.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Butte, V.K., Tang, L.C. (2008). Engineering Process Control: A Review. In: Misra, K.B. (eds) Handbook of Performability Engineering. Springer, London. https://doi.org/10.1007/978-1-84800-131-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-131-2_15

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-130-5

  • Online ISBN: 978-1-84800-131-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics