Skip to main content

On Weighted Least Squares Estimation for the Parameters of Weibull Distribution

  • Chapter
Recent Advances in Reliability and Quality in Design

Part of the book series: Springer Series in Reliability Engineering ((RELIABILITY))

Abstract

The two-parameter Weibull distribution is one of the most widely used life distributions in reliability studies. It has shown to be satisfactory in modeling the phenomena of fatigue and life of many devices such as ball bearings, electric bulbs, capacitors, transistors, motors and automotive radiators. In recent years, a number of modifications of the traditional Weibull distribution have been proposed and applied to model complex failure data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lai CD, Xie M, Murthy DNP (2003) A modified Weibull distribution. IEEE Transactions on Reliability 52:33–37

    Article  Google Scholar 

  2. Murthy DNP, Xie M, Jiang RY (2003) Weibull Models. Wiley, New Jersey

    Google Scholar 

  3. Murthy DNP, Bulmer M, Ecclestion JA (2004) Weibull model selection for reliability modeling. Reliability Engineering & System Safety 86:257–267

    Article  Google Scholar 

  4. Xie M, Tang Y, Goh TN (2002) A modified Weibull extension with bathtub-shaped failure rate function. Reliability Engineering & System Safety 76:279–285

    Article  Google Scholar 

  5. White JS (1964) Least-squares unbiased censored linear estimation for the log-Weibull (extreme value). Journal of Industrial Math Soc 14:21–60

    Google Scholar 

  6. Mann NR (1967) Tables for obtaining the best linear invariant estimates of parameters of the Weibull distribution. Technometrics 9:629–645

    Article  MathSciNet  Google Scholar 

  7. Berger RW, Lawrence K (1974) Estimating Weibull parameters by linear and non-linear regression. Technometrics 16:617–619

    Article  MATH  Google Scholar 

  8. Lawson C, Keats JB, Montgomery DC (1997) Comparison of robust and least-squares regression in computer-generated probability plots. IEEE Transactions on Reliability 46:108–115

    Article  Google Scholar 

  9. White JS (1969) The moments of log-Weibull order statistics. Technometrics 11:65–72

    Article  Google Scholar 

  10. Bergman B (1986) Estimation of Weibull parameters using a weight function. Journal of Materials Science Letters 5:611–614

    Article  Google Scholar 

  11. Faucher B, Tyson WR (1988) On the determination of Weibull parameters. Journal of Materials Science Letters 7:1199–1203

    Article  Google Scholar 

  12. Hung WL (2001) Weighted least squares estimation of the shape parameter of the Weibull distribution. Quality and Reliability Engineering International 17:467–469

    Article  Google Scholar 

  13. Lu HL, Chen CH, Wu JW (2004) A note on weighted least-squares estimation of the shape parameter of the Weibull distribution. Quality and Reliability Engineering International 20:579–586

    Article  Google Scholar 

  14. Nelson WB (2004) Applied Life Data Analysis. Wiley, New York

    MATH  Google Scholar 

  15. Pham H (2003) Handbook of Reliability Engineering. Springer, UK

    Google Scholar 

  16. Bernard A, Bosi-Levenbach EC (1953) The plotting of observations on probability paper. Statistica Neerlandica 7:163–173

    Article  Google Scholar 

  17. Herd GR (1960) Estimation of Reliability from Incomplete Data. Proceedings of the 6th International Symposium on Reliability and Quality Control

    Google Scholar 

  18. Johnson LG (1964) The Statistical Treatment of Fatigue Experiments. Elsevier, New York

    Google Scholar 

  19. Campean IF (2000) Exponential age sensitive method for failure rank estimation. Quality and Reliability Engineering International 16:291–300

    Article  Google Scholar 

  20. Hastings NAJ, Bartlett HJG (1997) Estimating the failure order-number from reliability data with suspended items. IEEE Transactions on Reliability 46:266–268

    Article  Google Scholar 

  21. Wang WD (2004) Refined rank regression method with censors. Quality and Reliability Engineering International 20:667–678

    Article  Google Scholar 

  22. Cohen AC (1965) Maximum likelihood estimation in the Weibull distribution based on complete and on censored samples. Technometrics 7:579–588

    Article  MathSciNet  Google Scholar 

  23. Montanari GC, Mazzanti G, Cacciari M, Fothergill JC (1997a) In search of convenient techniques for reducing bias in the estimation of Weibull parameter for uncensored tests. IEEE Transactions on Dielectrics and Electrical Insulation 4:306–313

    Article  Google Scholar 

  24. Montanari GC, Mazzanti G, Cacciari M, Fothergill JC (1997b) Optimum estimators for the Weibull distribution of censored data: singly-censored tests. IEEE Transactions on Dielectrics and Electrical Insulation 4:462–469

    Article  Google Scholar 

  25. Montanari GC, Mazzanti G, Cacciari M, Fothergill JC (1998) Optimum estimators for the Weibull distribution from censored test data: progressively-censored tests. IEEE Transactions on Dielectrics and Electrical Insulation 5:157–164

    Article  Google Scholar 

  26. Drapella A, Kosznik S (1999) An alternative rule for placement of empirical points on Weibull probability paper. Quality and Reliability Engineering International 15:57–59

    Article  Google Scholar 

  27. Nelder JA, Mead R (1965) A simplex method for function minimization. Computer Journal 7: 308–313

    Google Scholar 

  28. Thisted AT, Thisted RA (1988) Elements of Statistical Computing. CRC Press, Fla

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer London

About this chapter

Cite this chapter

Zhang, L., Xie, M., Tang, L. (2008). On Weighted Least Squares Estimation for the Parameters of Weibull Distribution. In: Pham, H. (eds) Recent Advances in Reliability and Quality in Design. Springer Series in Reliability Engineering. Springer, London. https://doi.org/10.1007/978-1-84800-113-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-113-8_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-112-1

  • Online ISBN: 978-1-84800-113-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics