Skip to main content
  • 281 Accesses

Peripheral arterial disease (PAD) is a vascular disorder that results in progressive narrowing of arteries of the lower extremities as a result of atherosclerosis. Although the initial evaluation for PAD consists of a basic physical examination including ankle-brachial indices and segmental pressures, many patients will require imaging to definitively establish the presence of PAD, and to provide an anatomic “roadmap” to aid in the performance of revascularization therapies.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rajagopalan S, Prince M. Magnetic resonance angiographic techniques for the diagnosis of arterial disease. Cardiol Clin. 2002;20(4):501–512, v.

    Article  PubMed  Google Scholar 

  2. Carroll TJ, Grist TM. Technical developments in MR angiography. Radiol Clin North Am. 2002;40(4):921–951.

    Article  PubMed  Google Scholar 

  3. Ersoy H, Zhang H, Prince MR. Peripheral MR angiography. J Cardiovasc Magn Reson. 2006;8(3):517–528.

    Article  PubMed  Google Scholar 

  4. Prince MR, Chabra SG, Watts R, et al. Contrast material travel times in patients undergoing peripheral MR angiography. Radiology. 2002;224(1):55–61.

    Article  PubMed  Google Scholar 

  5. Wang Y, Chen CZ, Chabra SG, et al. Bolus arterialvenous transit in the lower extremity and venous contamination in bolus chase three-dimensional magnetic resonance angiography. Invest Radiol. 2002;37(8):458–463.

    Article  PubMed  Google Scholar 

  6. Zhang HL, Ho BY, Chao M, et al. Decreased venous contamination on 3D gadolinium-enhanced bolus chase peripheral mr angiography using thigh compression. AJR Am J Roentgenol. 2004;183(4):1041–1047.

    PubMed  Google Scholar 

  7. Pereles FS, Collins JD, Carr JC, et al. Accuracy of stepping-table lower extremity MR angiography with dual-level bolus timing and separate calf acquisition: hybrid peripheral MR angiography. Radiology. 2006;240(1):283–290.

    Article  PubMed  Google Scholar 

  8. Morasch MD, Collins J, Pereles FS, et al. Lower extremity stepping-table magnetic resonance angiography with multilevel contrast timing and segmented contrast infusion. J Vasc Surg. 2003;37(1):62–71.

    Article  PubMed  Google Scholar 

  9. Meissner OA, Rieger J, Weber C, et al. Critical limb ischemia: hybrid MR angiography compared with DSA. Radiology. 2005;235(1):308–318.

    Article  PubMed  Google Scholar 

  10. Brothers TE, Greenfield LJ. Long-term results of aortoiliac reconstruction. J Vasc Interv Radiol. 1990;1(1):49–55.

    Article  PubMed  CAS  Google Scholar 

  11. Muhs BE, Gagne P, Sheehan P. Peripheral arterial disease: clinical assessment and indications for revascularization in the patient with diabetes. Curr Diab Rep. 2005;5(1):24–29.

    Article  PubMed  Google Scholar 

  12. Al-Omran M, Tu JV, Johnston KW, Mamdani MM, Kucey DS. Outcome of revascularization procedures for peripheral arterial occlusive disease in Ontario between 1991 and 1998: a population-based study. J Vasc Surg. 2003;38(2):279–288.

    Article  PubMed  Google Scholar 

  13. Raffetto JD, Chen MN, LaMorte WW, et al. Factors that predict site of outflow target artery anastomosis in infrainguinal revascularization. J Vasc Surg. 2002;35(6):1093–1099.

    Article  PubMed  Google Scholar 

  14. Lapeyre M, Kobeiter H, Desgranges P, Rahmouni A, Becquemin JP, Luciani A. Assessment of critical limb ischemia in patients with diabetes: comparison of MR angiography and digital subtraction angiography. AJR Am J Roentgenol. 2005;185(6):1641–1650.

    Article  PubMed  Google Scholar 

  15. Ramdev P, Rayan SS, Sheahan M, et al. A decade experience with infrainguinal revascularization in a dialysis-dependent patient population. J Vasc Surg. 2002;36(5):969–974.

    Article  PubMed  Google Scholar 

  16. Bertschinger K, Cassina PC, Debatin JF, Ruehm SG. Surveillance of peripheral arterial bypass grafts with three-dimensional MR angiography: comparison with digital subtraction angiography. AJR Am J Roentgenol. 2001;176(1):215–220.

    PubMed  CAS  Google Scholar 

  17. Ayuso JR, de Caralt TM, Pages M, et al. MRA is useful as a follow-up technique after endovascular repair of aortic aneurysms with nitinol endoprostheses. J Magn Reson Imaging. 2004;20(5):803–810.

    Article  PubMed  Google Scholar 

  18. Ersoy H, Jacobs P, Kent CK, Prince MR. Blood pool MR angiography of aortic stent-graft endoleak. AJR Am J Roentgenol. 2004;182(5):1181–1186.

    PubMed  Google Scholar 

  19. Insko EK, Kulzer LM, Fairman RM, Carpenter JP, Stavropoulos SW MR imaging for the detection of endoleaks in recipients of abdominal aortic stentgrafts with low magnetic susceptibility. Acad Radiol. 2003;10(5):509–513.

    Article  PubMed  Google Scholar 

  20. Cejna M, Loewe C, Schoder M, et al. MR angiography vs CT angiography in the follow-up of nitinol stent grafts in endoluminally treated aortic aneurysms. Eur Radiol. 2002;12(10):2443–2450.

    PubMed  Google Scholar 

  21. Berkmen YM, Lande A. The midaortic syndrome: diagnosis and treatment. Radiology. 1989;170(2):571–572.

    PubMed  CAS  Google Scholar 

  22. Messina LM, Reilly LM, Goldstone J, Ehrenfeld WK, Ferrell LD, Stoney RJ. Middle aortic syndrome. Effectiveness and durability of complex arterial revascularization techniques. Ann Surg. 1986;204(3):331–339.

    Article  PubMed  CAS  Google Scholar 

  23. Fontana A, Olivetti L. Peripheral MR angiography of Klippel-Trenaunay syndrome. Cardiovasc Intervent Radiol. 2004;27(3):297–299.

    Article  PubMed  Google Scholar 

  24. Elias DA, White LM, Rubenstein JD, Christakis M, Merchant N. Clinical evaluation and MR imaging features of popliteal artery entrapment and cystic adventitial disease. AJR Am J Roentgenol. 2003;180(3):627–632.

    PubMed  CAS  Google Scholar 

  25. Wright LB, Matchett WJ, Cruz CP, et al. Popliteal artery disease: diagnosis and treatment. Radiographics. 2004;24(2):467–479.

    Article  PubMed  Google Scholar 

  26. Herborn CU, Goyen M, Lauenstein TC, Debatin JF, Ruehm SG, Kroger K. Comprehensive time-resolved MRI of peripheral vascular malformations. AJR Am J Roentgenol. 2003;181(3):729–735.

    PubMed  Google Scholar 

  27. Bagga H, Bis KG. Contrast-enhanced MR angiography in the assessment of arteriovenous fistula after renal transplant biopsy. AJR Am J Roentgenol. 1999;172(6):1509–1511.

    PubMed  CAS  Google Scholar 

  28. Rinker B, Karp NS, Margiotta M, Blei F, Rosen R, Rofsky NM. The role of magnetic resonance imaging in the management of vascular malformations of the trunk and extremities. Plast Reconstr Surg. 2003;112(2):504–510.

    Article  PubMed  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

(2008). Peripheral MRA. In: Cardiovascular MRI in Practice. Springer, London. https://doi.org/10.1007/978-1-84800-090-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-090-2_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-089-6

  • Online ISBN: 978-1-84800-090-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics