Skip to main content

Hemodynamic Assessment and Congenital Heart Disease

  • Chapter
  • 366 Accesses

Cardiac MR is the most accurate non-invasive means to characterize a variety of congenital cardiovascular malformations.1–3 It also provides accurate hemodynamic measurements to detect and quantify a variety of valvular lesions as well as other lesions producing alterations of flow, such as coarctation of the aorta.2 Assessment of altered hemodynamics is an integral part of the investigation of most forms of congenital heart disease and thus hemodynamic investigations and congenital heart disease will be considered together in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. Valente AM, Powell AJ. Clinical Applications of Cardiovascular Magnetic Resonance in Congenital Heart Disease. Cardiol Clin. 2007;25(1):97–110.

    Article  PubMed  Google Scholar 

  2. 2. Weber OM, Higgins CB. MR evaluation of cardiovascular physiology in congenital heart disease: flow and function. J Cardiovasc Magn Reson. 2006;8(4):607–617.

    Article  PubMed  Google Scholar 

  3. 3. Dorfman AL, Geva T. Magnetic resonance imaging evaluation of congenital heart disease: conotruncal anomalies. J Cardiovasc Magn Reson. 2006;8(4):645–659.

    Article  PubMed  Google Scholar 

  4. 4. Lotz J, Meier C, Leppert A, Galanski M. Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation. Radiographics. 2002;22(3):651–671.

    PubMed  Google Scholar 

  5. 5. Glockner JF, Johnston DL, McGee KP. Evaluation of cardiac valvular disease with MR imaging: qualitative and quantitative techniques. Radiographics. 2003;23(1):e9.

    Article  PubMed  Google Scholar 

  6. 6. John AS, Dill T, Brandt RR, et al. Magnetic resonance to assess the aortic valve area in aortic stenosis: how does it compare to current diagnostic standards? J Am Coll Cardiol. 2003;42(3):519–526.

    Article  PubMed  Google Scholar 

  7. 7. Kupfahl C, Honold M, Meinhardt G, et al. Evaluation of aortic stenosis by cardiovascular magnetic reso- nance imaging: comparison with established routine clinical techniques. Heart. 2004;90(8):893–901.

    Article  PubMed  CAS  Google Scholar 

  8. 8. Kilner PJ, Manzara CC, Mohiaddin RH, et al. Magnetic resonance jet velocity mapping in mitral and aortic valve stenosis. Circulation. 1993;87:1239–1248.

    PubMed  CAS  Google Scholar 

  9. 9. Caruthers SD, Lin SJ, Brown P, et al. Practical value of cardiac magnetic resonance imaging for clinical quantification of aortic valve stenosis: comparison with echocardiography. Circulation. 2003;108:2236–2243.

    Article  PubMed  Google Scholar 

  10. 10. Nayak KS, Hu BS, Nishimura DG. Rapid quantitation of high-speed flow jets. Magn Reson Med. 2003;50(2):366–372.

    Article  PubMed  Google Scholar 

  11. 11. Petersen SE, Voigtlander T, Kreitner KF, et al. Quantification of shunt volumes in congenital heart diseases using a breath-hold MR phase contrast technique-comparison with oximetry. Int J Cardiovasc Imaging. 2002;18(1):53–60.

    Article  PubMed  Google Scholar 

  12. 12. Powell AJ, Tsai-Goodman B, Prakash A, Greil GF, Geva T. Comparison between phase-velocity cine magnetic resonance imaging and invasive oximetry for quantification of atrial shunts. Am J Cardiol. 2003;91(12):1523–1525, A1529.

    Article  PubMed  Google Scholar 

  13. 13. Piaw CS, Kiam OT, Rapaee A, et al. Use of non-invasive phase contrast magnetic resonance imaging for estimation of atrial septal defect size and morphology: a comparison with transesophageal echo. Cardiovasc Intervent Radiol. 2006;29(2):230–234.

    Article  PubMed  Google Scholar 

  14. 14. Valente AM, Sena L, Powell AJ, Del Nido PJ, Geva T. Cardiac magnetic resonance imaging evaluation of sinus venosus defects: comparison to surgical findings. Pediatr Cardiol. 2007;28(1):51–56.

    Article  PubMed  Google Scholar 

  15. 15. Roeleveld RJ, Marcus JT, Faes TJ, et al. Interventricular septal configuration at mr imaging and pulmonary arterial pressure in pulmonary hypertension. Radiology. 2005;234(3):710–717.

    Article  PubMed  Google Scholar 

  16. 16. Dellegrottaglie S, Sanz J, Poon M, et al. Pulmonary hypertension: accuracy of detection with left ven- tricular septal-to-free wall curvature ratio measured at cardiac MR. Radiology. 2007;243(1):63–69.

    Article  PubMed  Google Scholar 

  17. 17. Knauth AL, Gauvreau K, Powell AJ, et al. Ventricular Size and Function Assessed by Cardiac MRI Predict Major Adverse Clinical Outcomes Late After Tetralogy of Fallot Repair. Heart. Nov. 29 2006.

    Google Scholar 

  18. 18. Oosterhof T, Mulder BJ, Vliegen HW, de Roos A. Corrected tetralogy of Fallot: delayed enhancement in right ventricular outflow tract. Radiology. 2005;237(3):868–871.

    Article  PubMed  Google Scholar 

  19. 19. Niwa K. Aortic root dilatation in tetralogy of Fallot long-term after repair-histology of the aorta in tetralogy of Fallot: evidence of intrinsic aortopathy. Int J Cardiol. 2005;103(2):117–119.

    Article  PubMed  Google Scholar 

  20. 20. Soler R, Rodriguez E, Requejo I, Fernandez R, Raposo I. Magnetic resonance imaging of congenital abnormalities of the thoracic aorta. Eur Radiol. 1998;8(4):540–546.

    Article  PubMed  CAS  Google Scholar 

  21. 21. Wald RM, Powell AJ. Simple congenital heart lesions. J Cardiovasc Magn Reson. 2006;8(4):619–631.

    Article  PubMed  Google Scholar 

  22. 22. Nielsen JC, Powell AJ, Gauvreau K, Marcus EN, Prakash A, Geva T. Magnetic resonance imaging predictors of coarctation severity. Circulation. 2005;111(5):622–628.

    Article  PubMed  Google Scholar 

  23. 23. Araoz PA, Reddy GP, Tarnoff H, Roge CL, Higgins CB. MR findings of collateral circulation are more accurate measures of hemodynamic significance than arm-leg blood pressure gradient after repair of coarctation of the aorta. J Magn Reson Imaging. 2003;17(2): 177–183.

    Article  PubMed  Google Scholar 

  24. 24. Warnes CA. Transposition of the great arteries. Circulation. 2006;114(24):2699–2709.

    Article  PubMed  Google Scholar 

  25. 25. Laffon E, Latrabe V, Jimenez M, Ducassou D, Laurent F, Marthan R. Quantitative MRI comparison of pul- monary hemodynamics in mustard/senning-repaired patients suffering from transposition of the great arteries and healthy volunteers at rest. Eur Radiol. 2005:1–7.

    Google Scholar 

  26. 26. Yoo SJ, Kim YM, Choe YH. Magnetic resonance imaging of complex congenital heart disease. Int J Card Imaging. 1999;15(2):151–160.

    Article  PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

(2008). Hemodynamic Assessment and Congenital Heart Disease. In: Cardiovascular MRI in Practice. Springer, London. https://doi.org/10.1007/978-1-84800-090-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-090-2_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-089-6

  • Online ISBN: 978-1-84800-090-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics