Skip to main content

Instrumentation for Transesophageal Echocardiography

  • Chapter
  • First Online:
Transesophageal Echocardiography for Congenital Heart Disease

Abstract

Though transesophageal echocardiography (TEE) first started with single crystal devices and motor driven sector scanners, ultrasound instrumentation using phased array technology has now been universally adopted for the use of TEE in patients with congenital heart disease, including applications in neonates and infants. This chapter reviews the history, technology, methods, and instrumentation related to TEE utilized during support of surgical and interventional catheterization procedures, particularly in regard to the treatment and diagnosis of congenital heart disease. The instruments to be reviewed include miniaturized fully functional phased array probes and their utlity for cardiac imaging from transesophageal, epicardial, and intracardiac imaging locations. An important theme of this chapter is the role of miniaturization: the smaller and more versatile the probes, the better adapted they will be for use in children, especially neonates born with serious forms of congenital heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frazin L, Talano JV, Stephanides L, Loeb HS, Kopel L, Gunnar RM. Esophageal echocardiography. Circulation. 1976;54:102–8.

    CAS  PubMed  Google Scholar 

  2. Hisanaga K, Hisanaga A, Nagata K, Yoshida S. A new transesophageal real-time two-dimensional echocardiographic system using a flexible tube and its clinical applications. Proc Jpn J Med Ultrason. 1977;32:43–4.

    Google Scholar 

  3. Matsuzaki M, Shimizu M, Nomoto R, et al. Assessment of left ventricular anterior wall motion: a new application of esophageal echocardiography. J Cardiogr. 1978;8:113–24.

    Google Scholar 

  4. Schluter M, Hanrath P. Transesophageal echocardiography: potential advantages and initial clinical results. Pract Cardiol. 1983;9:149–51.

    Google Scholar 

  5. Hanrath P, Schlüter M, Langenstein BA, et al. Detection of ostium secundum atrial septal defects by transoesophageal cross-sectional echocardiography. Br Heart J. 1983;49:350–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Schlüter M, Langenstein BA, Polster J, et al. Transoesophageal cross-sectional echocardiography with a phased array transducer system. Technique and initial clinical results. Br Heart J. 1982;48:67–72.

    PubMed Central  PubMed  Google Scholar 

  7. Souquet J, Hanrath P, Zitelli L, Kremer P, Langenstein BA, Schlüter M. Transesophageal phased array for imaging the heart. IEEE Trans Biomed Eng. 1982;29:707–12.

    CAS  PubMed  Google Scholar 

  8. Schlüter M, Hinrichs A, Thier W, et al. Transesophageal two-dimensional echocardiography: comparison of ultrasonic and anatomic sections. Am J Cardiol. 1984;53:1173–8.

    PubMed  Google Scholar 

  9. Bansal RC, Shakudo M, Shah PM. Biplane transesophageal echocardiography: technique, image orientation, and preliminary experience in 131 patients. J Am Soc Echocardiogr. 1990;3:348–66.

    CAS  PubMed  Google Scholar 

  10. Omoto R, Kyo S, Matsumura M, Shah PM, Adachi H, Matsunaka T. Biplane color Doppler transesophageal echocardiography: its impact on cardiovascular surgery and further technological progress in the probe, a matrix phased-array biplane probe. Echocardiography. 1989;6:423–30.

    Google Scholar 

  11. Seward JB, Khandheria BK, Edwards WD, Oh JK, Freeman WK, Tajik AJ. Biplanar transesophageal echocardiography: anatomic correlations, image orientation, and clinical applications. Mayo Clin Proc. 1990;65:1193–213.

    CAS  PubMed  Google Scholar 

  12. Daniel WG, Pearlman AS, Hausmann D, et al. Initial experience and potential applications of multiplane transesophageal echocardiography. Am J Cardiol. 1993;71:358–61.

    CAS  PubMed  Google Scholar 

  13. Flachskampf FA, Hoffmann R, Verlande M, Schneider W, Ameling W, Hanrath P. Initial experience with a multiplane transoesophageal echo-transducer: assessment of diagnostic potential. Eur Heart J. 1992;13:1201–6.

    CAS  PubMed  Google Scholar 

  14. Nanda NC, Pinheiro L, Sanyal R, Rosenthal S, Kirklin JK. Multiplane transesophageal echocardiographic imaging and three-dimensional reconstruction. Echocardiography. 1992;9:667–76.

    Google Scholar 

  15. Omoto R, Kyo S, Matsumura M, Yamada E, Matsunaka T. Variomatrix—a newly developed transesophageal echocardiography probe with a rotating matrix biplane transducer. Technological aspects and initial clinical experience. Echocardiography. 1993;10:79–84.

    CAS  PubMed  Google Scholar 

  16. Pandian NG, Hsu TL, Schwartz SL, et al. Multiplane transesophageal echocardiography. Imaging planes, echocardiographic anatomy, and clinical experience with a prototype phased array OmniPlane probe. Echocardiography. 1992;9:649–66.

    CAS  PubMed  Google Scholar 

  17. Roelandt JR, Thomson IR, Vletter WB, Brommersma P, Bom N, Linker DT. Multiplane transesophageal echocardiography: latest evolution in an imaging revolution. J Am Soc Echocardiogr. 1992;5:361–7.

    CAS  PubMed  Google Scholar 

  18. Helmcke F, Mahan EF, Cooper JW, Nanda NC, Sanyal R. Use of the smaller pediatric transesophageal echocardiographic probe in adults. Echocardiography. 1990;7:727–37.

    CAS  PubMed  Google Scholar 

  19. Sutherland GR, Van Daele MERM, Stumper OFW, Hess J, Quaegebeur J. Intraoperative echocardiography in congenital heart disease: an overview. In: Erbel R, Khanderia BK, Brennecke R, Meyer J, Seward JB, Tajik AJ, editors. Transesophageal echocardiography: a new window to the heart. Berlin: Springer; 1989.

    Google Scholar 

  20. Cyran SE, Kimball TR, Meyer RA, et al. Efficacy of intraoperative transesophageal echocardiography in children with congenital heart disease. Am J Cardiol. 1989;63:594–8.

    CAS  PubMed  Google Scholar 

  21. Sreeram N, Stümper OF, Kaulitz R, Hess J, Roelandt JR, Sutherland GR. Comparative value of transthoracic and transesophageal echocardiography in the assessment of congenital abnormalities of the atrioventricular junction. J Am Coll Cardiol. 1990;16: 1205–14.

    CAS  PubMed  Google Scholar 

  22. Kyo S, Koike K, Takanawa E, et al. Impact of transesophageal Doppler echocardiography on pediatric cardiac surgery. Int J Card Imaging. 1989;4:41–2.

    CAS  PubMed  Google Scholar 

  23. Sahn DJ, Moises V, Cali G, Valdes-Cruz LM, Mazzei W, Mitchell M. Important roles of transesophageal color Doppler flow mapping studies (TEE) in infants with congenital heart disease [Abstract]. J Am Coll Cardiol 1990;15:204A.

    Google Scholar 

  24. Cromme-Dijkhuis AH, Djoa KK, Bom N, Hess J. Pediatric transesophageal echocardiography by means of a miniature 5-MHz multiplane transducer. Echocardiography. 1996;13:685.

    PubMed  Google Scholar 

  25. Piel JE, Lewandowski RS, Lorraine PW, Smith LS, Shiota T, Sahn DJ. 7.5-MHz pediatric phased array transesophageal endoscope. Echocardiography. 1996;13:677–84.

    PubMed  Google Scholar 

  26. Sloth E, Hasenkam JM, Sørensen KE, et al. Pediatric multiplane transesophageal echocardiography in congenital heart disease: new possibilities with a miniaturized probe. J Am Soc Echocardiogr. 1996;9:622–8.

    CAS  PubMed  Google Scholar 

  27. Gentles TL, Rosenfeld HM, Sanders SP, Laussen PC, Burke RP, van der Velde ME. Pediatric biplane transesophageal echocardiography: preliminary experience. Am Heart J. 1994;128:1225–33.

    CAS  PubMed  Google Scholar 

  28. O’Leary PW, Hagler DJ, Seward JB, et al. Biplane intraoperative transesophageal echocardiography in congenital heart disease. Mayo Clin Proc. 1995;70:317–26.

    PubMed  Google Scholar 

  29. Omoto R, Kyo S, Matsumura M, Maruyama M, Yokote Y. Future technical prospects in biplane transesophageal echocardiography: use of adult and pediatric biplane matrix probes. Echocardiography. 1991;8:713–20.

    CAS  PubMed  Google Scholar 

  30. Seward JB, Khandheria BK, Freeman WK, et al. Multiplane transesophageal echocardiography: image orientation, examination technique, anatomic correlations, and clinical applications. Mayo Clin Proc. 1993;68:523–51.

    CAS  PubMed  Google Scholar 

  31. Djoa KK, De Jong N, Cromme-Dijkhuis AH, Lancée CT, Bom N. Two decades of transesophageal phased array probes. Ultrasound Med Biol. 1996;22:1–9.

    CAS  PubMed  Google Scholar 

  32. Sundar S, DiNardo JA. Transesophageal echocardiography in pediatric surgery. Int Anesthesiol Clin. 2008;46:137–55.

    PubMed  Google Scholar 

  33. Hanna BM, El-Hewala AA, Gruber PJ, Gaynor JW, Spray TL, Seliem MA. Predictive value of intraoperative diagnosis of residual ventricular septal defects by transesophageal echocardiography. Ann Thorac Surg. 2010;89:1233–7.

    PubMed  Google Scholar 

  34. Shiota T, Lewandowski R, Piel JE, et al. Micromultiplane transesophageal echocardiographic probe for intraoperative study of congenital heart disease repair in neonates, infants, children, and adults. Am J Cardiol. 1999;83:292–5, A7.

    CAS  PubMed  Google Scholar 

  35. Scohy TV, Gommers D, Jan ten Harkel AD, Deryck Y, McGhie J, Bogers AJJC. Intraoperative evaluation of micromultiplane transesophageal echocardiographic probe in surgery for congenital heart disease. Eur J Echocardiogr. 2007;8:241–6.

    PubMed  Google Scholar 

  36. Zyblewski SC, Shirali GS, Forbus GA, et al. Initial experience with a miniaturized multiplane transesophageal probe in small infants undergoing cardiac operations. Ann Thorac Surg. 2010;89:1990–4.

    PubMed  Google Scholar 

  37. Pushparajah K, Miller OI, Rawlins D, Barlow A, Nugent K, Simpson JM. Clinical application of a micro multiplane transoesophageal probe in congenital cardiac disease. Cardiol Young. 2012;22:170–7.

    PubMed  Google Scholar 

  38. Faletra F, De Chiara F, Corno R, Passini L. Additional diagnostic value of multiplane echocardiography over biplane imaging in assessment of mitral prosthetic valves. Heart. 1996;75:609–13.

    CAS  PubMed  Google Scholar 

  39. Warner JG, Nomeir AM, Salim M, Kitzman DW. A prospective, randomized, blinded comparison of multiplane and biplane transesophageal echocardiographic techniques. J Am Soc Echocardiogr. 1996;9:865–73.

    PubMed  Google Scholar 

  40. Yvorchuk KY, Sochowski RA, Chan KL. A prospective comparison of the multiplane probe with the biplane probe in structure visualization and Doppler examination during transesophageal echocardiography. J Am Soc Echocardiogr. 1995;8:111–20.

    CAS  PubMed  Google Scholar 

  41. Ungerleider RM, Greeley WJ, Sheikh KH, Kern FH, Kisslo JA, Sabiston DC. The use of intraoperative echo with Doppler color flow imaging to predict outcome after repair of congenital cardiac defects. Ann Surg. 1989;210:526–33; discussion 533–4.

    CAS  PubMed  Google Scholar 

  42. Ungerleider RM, Greeley WJ, Sheikh KH, et al. Routine use of intraoperative epicardial echocardiography and Doppler color flow imaging to guide and evaluate repair of congenital heart lesions. A prospective study. J Thorac Cardiovasc Surg. 1990;100:297–309.

    CAS  PubMed  Google Scholar 

  43. Ungerleider RM, Greeley WJ, Kanter RJ, Kisslo JA. The learning curve for intraoperative echocardiography during congenital heart surgery. Ann Thorac Surg. 1992;54:691–6; discussion 696–8.

    CAS  PubMed  Google Scholar 

  44. Ungerleider RM. The use of intraoperative epicardial echocardiography with color flow imaging during the repair of complete atrioventricular septal defects. Cardiol Young. 1992;2:56–64.

    Google Scholar 

  45. Fyfe DA, Kline CH. Transesophageal echocardiography for congenital heart disease. Echocardiography. 1991;8:573–86.

    CAS  PubMed  Google Scholar 

  46. Ritter SB. Transesophageal real-time echocardiography in infants and children with congenital heart disease. J Am Coll Cardiol. 1991;18:569–80.

    CAS  PubMed  Google Scholar 

  47. Stümper OF, Elzenga NJ, Hess J, Sutherland GR. Transesophageal echocardiography in children with congenital heart disease: an initial experience. J Am Coll Cardiol. 1990;16:433–41.

    PubMed  Google Scholar 

  48. Muhiudeen Russell IA, Miller-Hance WC, Silverman NH. Intraoperative transesophageal echocardiography for pediatric patients with congenital heart disease. Anesth Analg. 1998;87:1058–76.

    CAS  PubMed  Google Scholar 

  49. Miller-Hance WC, Silverman NH. Transesophageal echocardiography (TEE) in congenital heart disease with focus on the adult. Cardiol Clin. 2000;18:861–92.

    CAS  PubMed  Google Scholar 

  50. Stevenson JG. Utilization of intraoperative transesophageal echocardiography during repair of congenital cardiac defects: a survey of North American centers. Clin Cardiol. 2003;26:132–4.

    PubMed  Google Scholar 

  51. Kamra K, Russell I, Miller-Hance WC. Role of transesophageal echocardiography in the management of pediatric patients with congenital heart disease. Paediatr Anaesth. 2011;21:479–93.

    PubMed  Google Scholar 

  52. Rice MJ, McDonald RW, Reller MD, Sahn DJ. Pediatric echocardiography: current role and a review of technical advances. J Pediatr. 1996;128:1–14.

    CAS  PubMed  Google Scholar 

  53. Weintraub R, Shiota T, Elkadi T, et al. Transesophageal echocardiography in infants and children with congenital heart disease. Circulation. 1992;86:711–22.

    CAS  PubMed  Google Scholar 

  54. Dan M, Bonato R, Mazzucco A, et al. Value of transesophageal echocardiography during repair of congenital heart defects. Ann Thorac Surg. 1990;50:637–43.

    CAS  PubMed  Google Scholar 

  55. Muhiudeen I, Silverman N. Intraoperative transesophageal echocardiography using high resolution imaging in infants and children with congenital heart disease. Echocardiography. 1993;10:599–608.

    CAS  PubMed  Google Scholar 

  56. Rosenfeld HM, Gentles TL, Wernovsky G, et al. Utility of intraoperative transesophageal echocardiography in the assessment of residual cardiac defects. Pediatr Cardiol. 1998;19:346–51.

    CAS  PubMed  Google Scholar 

  57. Stevenson JG, Sorensen GK, Gartman DM, Hall DG, Rittenhouse EA. Transesophageal echocardiography during repair of congenital cardiac defects: identification of residual problems necessitating reoperation. J Am Soc Echocardiogr. 1993;6:356–65.

    CAS  PubMed  Google Scholar 

  58. Frommelt MA, Frommelt PC. Advances in echocardiographic diagnostic modalities for the pediatrician. Pediatr Clin North Am. 1999;46:427–39, xi.

    CAS  PubMed  Google Scholar 

  59. Ungerleider RM. Biplane and multiplane transesophageal echocardiography. Am Heart J. 1999;138:612–3.

    CAS  PubMed  Google Scholar 

  60. Stümper O, Witsenburg M, Sutherland GR, Cromme-Dijkhuis A, Godman MJ, Hess J. Transesophageal echocardiographic monitoring of interventional cardiac catheterization in children. J Am Coll Cardiol. 1991;18:1506–14.

    PubMed  Google Scholar 

  61. Hellenbrand WE, Fahey JT, McGowan FX, Weltin GG, Kleinman CS. Transesophageal echocardiographic guidance of transcatheter closure of atrial septal defect. Am J Cardiol. 1990;66:207–13.

    CAS  PubMed  Google Scholar 

  62. Magni G, Hijazi ZM, Pandian NG, et al. Two- and three-dimensional transesophageal echocardiography in patient selection and assessment of atrial septal defect closure by the new DAS-Angel Wings device: initial clinical experience. Circulation. 1997;96:1722–8.

    CAS  PubMed  Google Scholar 

  63. Diab KA, Cao Q-L, Bacha EA, Hijazi ZM. Device closure of atrial septal defects with the Amplatzer septal occluder: safety and outcome in infants. J Thorac Cardiovasc Surg. 2007;134:960–6.

    PubMed  Google Scholar 

  64. Lim DS, Forbes TJ, Rothman A, Lock JE, Landzberg MJ. Transcatheter closure of high-risk muscular ventricular septal defects with the CardioSEAL occluder: initial report from the CardioSEAL VSD registry. Catheter Cardiovasc Interv. 2007;70:740–4.

    PubMed  Google Scholar 

  65. Carminati M, Butera G, Chessa M, Drago M, Negura D, Piazza L. Transcatheter closure of congenital ventricular septal defect with Amplatzer septal occluders. Am J Cardiol. 2005;96:52L–8.

    PubMed  Google Scholar 

  66. Arora R, Trehan V, Thakur AK, Mehta V, Sengupta PP, Nigam M. Transcatheter closure of congenital muscular ventricular septal defect. J Interv Cardiol. 2004;17:109–15.

    PubMed  Google Scholar 

  67. Chessa M, Carminati M, Cao Q-L, et al. Transcatheter closure of congenital and acquired muscular ventricular septal defects using the Amplatzer device. J Invasive Cardiol. 2002;14:322–7.

    PubMed  Google Scholar 

  68. Holzer R, Balzer D, Cao Q-L, Lock K, Hijazi ZM. Amplatzer Muscular Ventricular Septal Defect Investigators. Device closure of muscular ventricular septal defects using the Amplatzer muscular ventricular septal defect occluder: immediate and mid-term results of a U.S. registry. J Am Coll Cardiol. 2004;43:1257–63.

    PubMed  Google Scholar 

  69. Pedra CAC, Pedra SRF, Chaccur P, et al. Perventricular device closure of congenital muscular ventricular septal defects. Expert Rev Cardiovasc Ther. 2010;8:663–74.

    PubMed  Google Scholar 

  70. Xing Q, Pan S, An Q, et al. Minimally invasive perventricular device closure of perimembranous ventricular septal defect without cardiopulmonary bypass: multicenter experience and mid-term follow-up. J Thorac Cardiovasc Surg. 2010;139:1409–15.

    PubMed  Google Scholar 

  71. Gan C, Lin K, An Q, et al. Perventricular device closure of muscular ventricular septal defects on beating hearts: initial experience in eight children. J Thorac Cardiovasc Surg. 2009;137:929–33.

    PubMed  Google Scholar 

  72. Gan C, An Q, Lin K, et al. Perventricular device closure of ventricular septal defects: six months results in 30 young children. Ann Thorac Surg. 2008;86:142–6.

    PubMed  Google Scholar 

  73. Bacha EA, Cao QL, Galantowicz ME, et al. Multicenter experience with perventricular device closure of muscular ventricular septal defects. Pediatr Cardiol. 2005;26:169–75.

    CAS  PubMed  Google Scholar 

  74. Meyer RA. History of ultrasound in cardiology. J Ultrasound Med. 2004;23:1–11.

    PubMed  Google Scholar 

  75. Mumm B, Nanda NC, Sorrell VL. Technical background and current and future aspects of three-dimensional echocardiography. In: Atlas of three-dimensional echocardiography. Armonk: Futura Publishing Company, inc.; 2002. p. 1–20.

    Google Scholar 

  76. Sugeng L, Weinert L, Lang RM. Left ventricular assessment using real time three dimensional echocardiography. Heart. 2003;89 Suppl 3:iii29–36.

    PubMed  Google Scholar 

  77. Chan K-L, Liu X, Ascah KJ, Beauchesne LM, Burwash IG. Comparison of real-time 3-dimensional echocardiography with conventional 2-dimensional echocardiography in the assessment of structural heart disease. J Am Soc Echocardiogr. 2004;17:976–80.

    PubMed  Google Scholar 

  78. Skubas NJ, Mahmood F, Shook DC, Shernan SK. Perioperative applications of new modalities: strain echocardiography and three-dimensional echocardiography. In: Savage RM, Aronson S, editors. Comprehensive textbook of perioperative transesophageal echocardiography. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 2010. p. 694–724.

    Google Scholar 

  79. Armstrong WF, Ryan T. Specialized echocardiographic techniques and methods. In: Feigenbaum’s echocardiography. 7th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2010. p. 39–66.

    Google Scholar 

  80. Vegas A, Meineri M, Jerath A. Real-time three-dimensional transesophageal echocardiography: a step-by-step guide. New York: Springer; 2012.

    Google Scholar 

  81. Sugeng L, Shernan SK, Weinert L, et al. Real-time three-dimensional transesophageal echocardiography in valve disease: comparison with surgical findings and evaluation of prosthetic valves. J Am Soc Echocardiogr. 2008;21:1347–54.

    PubMed  Google Scholar 

  82. Gripari P, Tamborini G, Barbier P, et al. Real-time three-dimensional transoesophageal echocardiography: a new intraoperative feasible and useful technology in cardiac surgery. Int J Cardiovasc Imaging. 2010;26:651–60.

    PubMed  Google Scholar 

  83. Horton KD, Whisenant B, Horton S. Percutaneous closure of a mitral perivalvular leak using three dimensional real time and color flow imaging. J Am Soc Echocardiogr. 2010;23:903.e5–7.

    Google Scholar 

  84. La Canna G, Arendar I, Maisano F, et al. Real-time three-dimensional transesophageal echocardiography for assessment of mitral valve functional anatomy in patients with prolapse-related regurgitation. Am J Cardiol. 2011;107:1365–74.

    PubMed  Google Scholar 

  85. Lang RM, Tsang W, Weinert L, Mor-Avi V, Chandra S. Valvular heart disease the value of 3-dimensional echocardiography. J Am Coll Cardiol. 2011;58:1933–44.

    PubMed  Google Scholar 

  86. Cao Q, Radtke W, Berger F, Zhu W, Hijazi ZM. Transcatheter closure of multiple atrial septal defects. Initial results and value of two- and three-dimensional transoesophageal echocardiography. Eur Heart J. 2000;21:941–7.

    CAS  PubMed  Google Scholar 

  87. Acar P, Abadir S, Aggoun Y. Transcatheter closure of perimembranous ventricular septal defects with Amplatzer occluder assessed by real-time three-dimensional echocardiography. Eur J Echocardiogr. 2007;8:110–5.

    PubMed  Google Scholar 

  88. Balzer J, Kühl H, Rassaf T, et al. Real-time transesophageal three-dimensional echocardiography for guidance of percutaneous cardiac interventions: first experience. Clin Res Cardiol. 2008;97:565–74.

    PubMed  Google Scholar 

  89. Baker GH, Shirali G, Ringewald JM, Hsia TY, Bandisode V. Usefulness of live three-dimensional transesophageal echocardiography in a congenital heart disease center. Am J Cardiol. 2009;103:1025–8.

    PubMed  Google Scholar 

  90. Shirali GS. Three-dimensional echocardiography in congenital heart disease. Echocardiography. 2012;29:242–8.

    PubMed  Google Scholar 

  91. Irvine T, Li XN, Mori Y, et al. A digital 3-dimensional method for computing great artery flows: in vitro validation studies. J Am Soc Echocardiogr. 2000;13:841–8.

    CAS  PubMed  Google Scholar 

  92. Sreeram N, Kaulitz R, Stümper OF, Hess J, Quaegebeur JM, Sutherland GR. Comparative roles of intraoperative epicardial and early postoperative transthoracic echocardiography in the assessment of surgical repair of congenital heart defects. J Am Coll Cardiol. 1990;16:913–20.

    CAS  PubMed  Google Scholar 

  93. Muhiudeen IA, Roberson DA, Silverman NH, Haas G, Turley K, Cahalan MK. Intraoperative echocardiography in infants and children with congenital cardiac shunt lesions: transesophageal versus epicardial echocardiography. J Am Coll Cardiol. 1990;16:1687–95.

    CAS  PubMed  Google Scholar 

  94. Stümper O, Kaulitz R, Sreeram N, et al. Intraoperative transesophageal versus epicardial ultrasound in surgery for congenital heart disease. J Am Soc Echocardiogr. 1990;3:392–401.

    PubMed  Google Scholar 

  95. Reeves ST, Glas KE, Eltzschig H, et al. Guidelines for performing a comprehensive epicardial echocardiography examination: recommendations of the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists. J Am Soc Echocardiogr. 2007;20:427–37.

    PubMed  Google Scholar 

  96. Glas KE, Swaminathan M, Reeves ST, et al. Guidelines for the performance of a comprehensive intraoperative epiaortic ultrasonographic examination: recommendations of the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists; endorsed by the Society of Thoracic Surgeons. J Am Soc Echocardiogr. 2007;20:1227–35.

    PubMed  Google Scholar 

  97. Wilson MJ, Boyd SY, Lisagor PG, Rubal BJ, Cohen DJ. Ascending aortic atheroma assessed intraoperatively by epiaortic and transesophageal echocardiography. Ann Thorac Surg. 2000;70:25–30.

    CAS  PubMed  Google Scholar 

  98. Rosenberger P, Shernan SK, Löffler M, et al. The influence of epiaortic ultrasonography on intraoperative surgical management in 6051 cardiac surgical patients. Ann Thorac Surg. 2008;85: 548–53.

    PubMed  Google Scholar 

  99. Ibrahim KS, Vitale N, Tromsdal A, Kirkeby-Garstad I, Fraser AG, Haaverstad R. Enhanced intra-operative grading of ascending aorta atheroma by epiaortic ultrasound vs echocardiography. Int J Cardiol. 2008;128:218–23.

    PubMed  Google Scholar 

  100. Sylivris S, Calafiore P, Matalanis G, et al. The intraoperative assessment of ascending aortic atheroma: epiaortic imaging is superior to both transesophageal echocardiography and direct palpation. J Cardiothorac Vasc Anesth. 1997;11:704–7.

    CAS  PubMed  Google Scholar 

  101. Suvarna S, Smith A, Stygall J, et al. An intraoperative assessment of the ascending aorta: a comparison of digital palpation, transesophageal echocardiography, and epiaortic ultrasonography. J Cardiothorac Vasc Anesth. 2007;21:805–9.

    PubMed  Google Scholar 

  102. Hilberath JN, Shernan SK, Segal S, Smith B, Eltzschig HK. The feasibility of epicardial echocardiography for measuring aortic valve area by the continuity equation. Anesth Analg. 2009;108:17–22.

    PubMed  Google Scholar 

  103. Taneja R, Quaghebeur B, Stitt LW, et al. The role of epicardial echocardiography in the measurement of transvalvular flow velocities during aortic valve replacement. J Cardiothorac Vasc Anesth. 2009;23:292–7.

    PubMed  Google Scholar 

  104. Allyn JW, Lennon PF, Siegle JH, Quinn RD, D’Ambra MN. The use of epicardial echocardiography as an adjunct to transesophageal echocardiography for the detection of pulmonary embolism. Anesth Analg. 2006;102:729–30.

    CAS  PubMed  Google Scholar 

  105. Dragulescu A, Golding F, Van Arsdell G, et al. The impact of additional epicardial imaging to transesophageal echocardiography on intraoperative detection of residual lesions in congenital heart surgery. J Thorac Cardiovasc Surg. 2011;143(2):361–7.

    PubMed  Google Scholar 

  106. Schmitz C, Esmailzadeh B, Herberg U, et al. Hybrid procedures can reduce the risk of congenital cardiovascular surgery. Eur J Cardiothorac Surg. 2008;34:718–25.

    PubMed  Google Scholar 

  107. Chojnicki M, Haponiuk I, Jaworski R, et al. Intraoperative imaging of hybrid procedure for muscular ventricular septal defects closure with Amplatzer Duct Occluder II (Polish). Kardiol Pol. 2011;69:1280–1.

    PubMed  Google Scholar 

  108. Li S, Chen W, Zhang Y, et al. Hybrid therapy for pulmonary atresia with intact ventricular septum. Ann Thorac Surg. 2011;91:1467–71.

    PubMed  Google Scholar 

  109. De Castro S, Salandin V, Cavarretta E, et al. Epicardial real-time three-dimensional echocardiography in cardiac surgery: a preliminary experience. Ann Thorac Surg. 2006;82:2254–9.

    PubMed  Google Scholar 

  110. Salandin V, De Castro S, Cavarretta E, et al. Epicardial real-time 3-dimensional echocardiography with the use of a pediatric transthoracic probe: a technical approach. J Cardiothorac Vasc Anesth. 2010;24:43–50.

    PubMed  Google Scholar 

  111. Cieszynski T. Intracardiac method for the investigation of structure of the heart with the aid of ultrasonics. Arch Immunol Ther Exp (Warsz). 1960;8:551–7.

    CAS  Google Scholar 

  112. Bruce CJ, Packer DL, Belohlavek M, Seward JB. Intracardiac echocardiography: newest technology. J Am Soc Echocardiogr. 2000;13:788–95.

    CAS  PubMed  Google Scholar 

  113. Mintz GS, Painter JA, Pichard AD, et al. Atherosclerosis in angiographically “normal” coronary artery reference segments: an intravascular ultrasound study with clinical correlations. J Am Coll Cardiol. 1995;25:1479–85.

    CAS  PubMed  Google Scholar 

  114. Pandian NG, Weintraub A, Kreis A, Schwartz SL, Konstam MA, Salem DN. Intracardiac, intravascular, two-dimensional, high-frequency ultrasound imaging of pulmonary artery and its branches in humans and animals. Circulation. 1990;81:2007–12.

    CAS  PubMed  Google Scholar 

  115. Weissman NJ, Mendelsohn FO, Palacios IF, Weyman AE. Development of coronary compensatory enlargement in vivo: sequential assessments with intravascular ultrasound. Am Heart J. 1995;130:1283–5.

    CAS  PubMed  Google Scholar 

  116. Nissen SE, Yock P. Intravascular ultrasound: novel pathophysiological insights and current clinical applications. Circulation. 2001;103:604–16.

    CAS  PubMed  Google Scholar 

  117. Mintz GS, Nissen SE, Anderson WD, et al. American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS). A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol. 2001;37:1478–92.

    CAS  PubMed  Google Scholar 

  118. Zimmer RJ, Lee MS. Transplant coronary artery disease. JACC Cardiovasc Interv. 2010;3:367–77.

    PubMed  Google Scholar 

  119. Lee MS, Finch W, Weisz G, Kirtane AJ. Cardiac allograft vasculopathy. Rev Cardiovasc Med. 2011;12:143–52.

    PubMed  Google Scholar 

  120. Angelini P, Flamm SD. Newer concepts for imaging anomalous aortic origin of the coronary arteries in adults. Catheter Cardiovasc Interv. 2007;69:942–54.

    PubMed  Google Scholar 

  121. Foster GP, Picard MH. Intracardiac echocardiography: current uses and future directions. Echocardiography. 2001;18:43–8.

    CAS  PubMed  Google Scholar 

  122. Isner JM, Losordo DW, Rosenfield K, et al. Catheter-based intravascular ultrasound discriminates bicuspid from tricuspid valves in adults with calcific aortic stenosis. J Am Coll Cardiol. 1990;15:1310–7.

    CAS  PubMed  Google Scholar 

  123. Schwartz SL, Pandian NG, Hsu TL, Weintraub A, Cao QL. Intracardiac echocardiographic imaging of cardiac abnormalities, ischemic myocardial dysfunction, and myocardial perfusion: studies with a 10 MHz ultrasound catheter. J Am Soc Echocardiogr. 1993;6:345–55.

    CAS  PubMed  Google Scholar 

  124. Chu E, Kalman JM, Kwasman MA, et al. Intracardiac echocardiography during radiofrequency catheter ablation of cardiac arrhythmias in humans. J Am Coll Cardiol. 1994;24:1351–7.

    CAS  PubMed  Google Scholar 

  125. Tearney GJ, Regar E, Akasaka T, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol. 2012;59:1058–72.

    PubMed  Google Scholar 

  126. Tsimikas S, DeMaria AN. The clinical emergence of optical coherence tomography: defining a role in intravascular imaging. J Am Coll Cardiol. 2012;59:1090–2.

    PubMed  Google Scholar 

  127. Ricou F, Nicod PH, Moser KM, Peterson KL. Catheter-based intravascular ultrasound imaging of chronic thromboembolic pulmonary disease. Am J Cardiol. 1991;67:749–52.

    CAS  PubMed  Google Scholar 

  128. Scott PJ, Essop AR, al-Ashab W, Deaner A, Parsons J, Williams G. Imaging of pulmonary vascular disease by intravascular ultrasound. Int J Card Imaging. 1993;9:179–84.

    CAS  PubMed  Google Scholar 

  129. Day RW, Tani LY. Pulmonary intravascular ultrasound in infants and children with congenital heart disease. Cathet Cardiovasc Diagn. 1997;41:395–8.

    CAS  PubMed  Google Scholar 

  130. Sugimura T, Kato H, Inoue O, et al. Intravascular ultrasound of coronary arteries in children. Assessment of the wall morphology and the lumen after Kawasaki disease. Circulation. 1994;89:258–65.

    CAS  PubMed  Google Scholar 

  131. Iemura M, Ishii M, Sugimura T, Akagi T, Kato H. Long term consequences of regressed coronary aneurysms after Kawasaki disease: vascular wall morphology and function. Heart. 2000;83: 307–11.

    CAS  PubMed  Google Scholar 

  132. DeGroff CG, Rice MJ, Reller MD, Shiota T, Sahn DJ. Intravascular ultrasound can assist angiographic assessment of coarctation of the aorta. Am Heart J. 1994;128:836–9.

    CAS  PubMed  Google Scholar 

  133. Xu J, Shiota T, Omoto R, et al. Intravascular ultrasound assessment of regional aortic wall stiffness, distensibility, and compliance in patients with coarctation of the aorta. Am Heart J. 1997;134:93–8.

    CAS  PubMed  Google Scholar 

  134. Sohn S, Rothman A, Shiota T, et al. Acute and follow-up intravascular ultrasound findings after balloon dilation of coarctation of the aorta. Circulation. 1994;90:340–7.

    CAS  PubMed  Google Scholar 

  135. Nakanishi T. Balloon dilatation and stent implantation for vascular stenosis. Pediatr Int. 2001;43:548–52.

    CAS  PubMed  Google Scholar 

  136. Chintala K, Forbes TJ, Karpawich PP. Effectiveness of transvenous pacemaker leads placed through intravascular stents in patients with congenital heart disease. Am J Cardiol. 2005;95:424–7.

    PubMed  Google Scholar 

  137. Hardy BG, Silka MJ, Sahn DJ. Journeys inside the heart: fantastic voyages, but what will their impact be? Mayo Clin Proc. 1996;71:719–20.

    CAS  PubMed  Google Scholar 

  138. Valdes-Cruz LM, Sideris E, Sahn DJ, et al. Transvascular intracardiac applications of a miniaturized phased-array ultrasonic endoscope. Initial experience with intracardiac imaging in piglets. Circulation. 1991;83:1023–7.

    CAS  PubMed  Google Scholar 

  139. O’Leary PW. Intracardiac echocardiography in congenital heart disease: are we ready to begin the fantastic voyage? Pediatr Cardiol. 2002;23:286–91.

    PubMed  Google Scholar 

  140. Rigatelli G, Dell’ Avvocata F, Cardaioli P, et al. Five-year follow-up of intracardiac echocardiography-assisted transcatheter closure of complex ostium secundum atrial septal defect. Congenit Heart Dis. 2012;7:103–10.

    PubMed  Google Scholar 

  141. Barker PCA. Intracardiac echocardiography in congenital heart disease. J Cardiovasc Transl Res. 2009;2:19–23.

    PubMed  Google Scholar 

  142. Chessa M, Butera G, Carminati M. Intracardiac echocardiography during percutaneous pulmonary valve replacement. Eur Heart J. 2008;29:2908.

    PubMed  Google Scholar 

  143. Huber CH, Hurni M, Tsang V, Segesser LKV. Valved stents for transapical pulmonary valve replacement. J Thorac Cardiovasc Surg. 2009;137:914–8.

    PubMed  Google Scholar 

  144. Hijazi Z, Wang Z, Cao Q, Koenig P, Waight D, Lang R. Transcatheter closure of atrial septal defects and patent foramen ovale under intracardiac echocardiographic guidance: feasibility and comparison with transesophageal echocardiography. Catheter Cardiovasc Interv. 2001;52:194–9.

    CAS  PubMed  Google Scholar 

  145. Bartel T, Konorza T, Neudorf U, et al. Intracardiac echocardiography: an ideal guiding tool for device closure of interatrial communications. Eur J Echocardiogr. 2005;6:92–6.

    PubMed  Google Scholar 

  146. Bruce CJ, O’Leary P, Hagler DJ, Seward JB, Cabalka AK. Miniaturized transesophageal echocardiography in newborn infants. J Am Soc Echocardiogr. 2002;15:791–7.

    PubMed  Google Scholar 

  147. Cannesson M, Hénaine R, Metton O, et al. Images in cardiovascular medicine. Intraoperative transesophageal echocardiography using a miniaturized transducer in a neonate undergoing Norwood procedure for hypoplastic left heart syndrome. Circulation. 2008;117:702–3.

    PubMed  Google Scholar 

  148. Sheikh I, Kumar D, Liu Z, et al. Novel uses of intracardiac echocardiography with a phased-array imaging catheter. J Am Soc Echocardiogr. 2003;16:1073–7.

    PubMed  Google Scholar 

  149. Ren J-F, Marchlinski FE. Utility of intracardiac echocardiography in left heart ablation for tachyarrhythmias. Echocardiography. 2007;24:533–40.

    PubMed  Google Scholar 

  150. Wazni OM, Tsao H-M, Chen S-A, et al. Cardiovascular imaging in the management of atrial fibrillation. J Am Coll Cardiol. 2006;48:2077–84.

    PubMed  Google Scholar 

  151. Dravid SG, Hope B, McKinnie JJ. Intracardiac echocardiography in electrophysiology: a review of current applications in practice. Echocardiography. 2008;25:1172–5.

    PubMed  Google Scholar 

  152. Khaykin Y, Skanes A, Whaley B, et al. Real-time integration of 2D intracardiac echocardiography and 3D electroanatomical mapping to guide ventricular tachycardia ablation. Heart Rhythm. 2008;5:1396–402.

    PubMed  Google Scholar 

  153. Kim SS, Hijazi ZM, Lang RM, Knight BP. The use of intracardiac echocardiography and other intracardiac imaging tools to guide noncoronary cardiac interventions. J Am Coll Cardiol. 2009;53:2117–28.

    PubMed  Google Scholar 

  154. Bunch TJ, Weiss JP, Crandall BG, et al. Image integration using intracardiac ultrasound and 3D reconstruction for scar mapping and ablation of ventricular tachycardia. J Cardiovasc Electrophysiol. 2010;21:678–84.

    PubMed  Google Scholar 

  155. Nölker G, Gutleben K-J, Asbach S, et al. Intracardiac echocardiography for registration of rotational angiography-based left atrial reconstructions: a novel approach integrating two intraprocedural three-dimensional imaging techniques in atrial fibrillation ablation. Europace. 2011;13:492–8.

    PubMed  Google Scholar 

  156. Wein W, Camus E, John M, et al. Towards guidance of electrophysiological procedures with real-time 3D intracardiac echocardiography fusion to C-arm CT. Med Image Comput Comput Assist Interv. 2009;12:9–16.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Sahn MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Hui, L., Sahn, D.J. (2014). Instrumentation for Transesophageal Echocardiography. In: Wong, P., Miller-Hance, W. (eds) Transesophageal Echocardiography for Congenital Heart Disease. Springer, London. https://doi.org/10.1007/978-1-84800-064-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-064-3_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-061-2

  • Online ISBN: 978-1-84800-064-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics