Skip to main content

Science of Ultrasound and Echocardiography

  • Chapter
  • First Online:
Transesophageal Echocardiography for Congenital Heart Disease
  • 3202 Accesses

Abstract

For anyone seeking to achieve proficiency in transesophageal echocardiography, it is important to have a solid understanding of the underlying science of ultrasound, along with knowledge of the instrumentation and equipment utilized for cardiac imaging. This chapter provides a review of all of these topics, particularly as they apply to echocardiography. Basic principles of sound will first be discussed, followed by the process of ultrasonic two-dimensional image formation. Principles of Doppler echocardiography (and its applications) will then be presented. Finally, echocardiography instrumentation, echocardiographic artifacts, and digital archiving/networking of echocardiographic studies will be discussed. Familiarity with the information in this chapter will provide readers a greater understanding of the many technical aspects of echocardiography, enabling them to optimize their cardiac ultrasound platforms so that the best possible information can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zagzebski JA. Essentials of ultrasound physics. St. Louis: Mosby; 1996.

    Google Scholar 

  2. Hendee WR, Ritenour ER. Medical imaging physics. 4th ed. New York: Wiley; 2002.

    Book  Google Scholar 

  3. Hedrick WR, Hykes DL, Starchman DE. Ultrasound physics and instrumentation. 4th ed. St. Louis: Mosby; 2004.

    Google Scholar 

  4. Gibbs V, Cole D, Sassano A. Ultrasound physics and technology: how, why and when. Edinburgh/New York: Churchill Livingstone/Elsevier; 2009.

    Google Scholar 

  5. Feigenbaum H. History of echocardiography. In: Feigenbaum’s echocardiography. 7th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2010. p. 1–8.

    Google Scholar 

  6. Denny MW. Air and water: the biology and physics of life’s media. Princeton: Princeton University Press; 1993.

    Google Scholar 

  7. Hendee WR, Ritenour ER. Ultrasound waves. In: Medical imaging physics. 4th ed. New York: Wiley; 2002. p. 303–16.

    Chapter  Google Scholar 

  8. Shankar H, Pagel PS. Potential adverse ultrasound-related biological effects: a critical review. Anesthesiology. 2011;115:1109–24.

    Article  PubMed  Google Scholar 

  9. Gauvin A, Cloutier G, Germain M. Principles of ultrasound. In: Denault AY, Couture P, Vegas A, Buithieu J, Tardif J-C, editors. Transesophageal echocardiography multimedia manual: a perioperative transdisciplinary approach. 2nd ed. New York/London: Informa Healthcare; 2011. p. 1–18.

    Google Scholar 

  10. Hendee WR, Ritenour ER. Ultrasound transducers. In: Medical imaging physics. 4th ed. New York: Wiley; 2002. p. 317–29.

    Chapter  Google Scholar 

  11. Prager RW, Ijaz UZ, Gee AH, Treece GM, Wells PNT. Three-dimensional ultrasound imaging. Proc Inst Mech Eng H J Eng Med. 2010;224:193–223.

    Article  CAS  Google Scholar 

  12. Rabben SI. Technical principles of transthoracic three-dinensional echocardiography. In: Badano LP, Lang RM, Zamorano JL, editors. Textbook of real-time three dimensional echocardiography. London: Springer; 2011. p. 9–24.

    Google Scholar 

  13. Salgo IS. 3D transesophageal echocardiographic technologies. In: Badano LP, Lang RM, Zamorano JL, editors. Textbook of real-time three dimensional echocardiography. London: Springer; 2011. p. 25–32.

    Google Scholar 

  14. Maslow A, Perrino AC. Principles and technology of two-dimensional echocardiography. In: Reeves ST, editor. A practical approach to transesophageal echocardiography. 2nd ed. Philadelphia/London: Lippincott Williams & Wilkins; 2008. p. 3–23.

    Google Scholar 

  15. Erb J. Basic principles of physics in echocardiographic imaging and Doppler techniques. In: Feneck RO, Kneeshaw J, Ranucci M, editors. Core topics in transesophageal echocardiography. Cambridge/New York: Cambridge University Press; 2010. p. 13–33.

    Chapter  Google Scholar 

  16. Hedrick WR, Hykes DL, Starchman DE. Real-time ultrasound instrumentation. In: Ultrasound physics and instrumentation. 4th ed. Philadelphia: Elsevier Mosby; 2005. p. 129–54.

    Google Scholar 

  17. Bulwer BE, Shernan SK, Thomas JD. Physics of echocardiography. In: Savage RM, Aronson S, editors. Comprehensive textbook of perioperative transesophageal echocardiography. 2nd ed. Philadelphia: Lippincott Williams & Wilkins; 2010. p. 3–41.

    Google Scholar 

  18. Evans DH, McDicken WN. Doppler ultrasound: physics, instrumentation, and signal processing. 2nd ed. Chichester/New York: Wiley; 2000.

    Google Scholar 

  19. Lopez L, Colan SD, Frommelt PC, et al. Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J Am Soc Echocardiogr. 2010;23:465–95.

    Article  PubMed  Google Scholar 

  20. Gaspar T, Adawi S, Sachner R, et al. Three-dimensional imaging of the left ventricular outflow tract: impact on aortic valve area estimation by the continuity equation. J Am Soc Echocardiogr. 2012;25(7):749–57.

    Article  PubMed  Google Scholar 

  21. Saitoh T, Shiota M, Izumo M, et al. Comparison of left ventricular outflow geometry and aortic valve area in patients with aortic stenosis by 2-dimensional versus 3-dimensional echocardiography. Am J Cardiol. 2012;109:1626–31.

    Article  PubMed  Google Scholar 

  22. Otto CM, Bonow RO. Valvular heart disease: a companion to braunwald’s heart disease. 3rd ed. Philadelphia: Saunders Elsevier; 2009.

    Google Scholar 

  23. Armstrong WF, Ryan T. Hemodynamics. In: Armstrong WF, Ryan T, Feigenbaum H, editors. Feigenbaum’s Echocardiography. 7th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2010. p. 217–40.

    Google Scholar 

  24. Armstrong WF, Ryan T. Evaluation of systolic function of the left ventricle. In: Armstrong WF, Ryan T, Feigenbaum H, editors. Feigenbaum’s Echocardiography. 7th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2010. p. 123–57.

    Google Scholar 

  25. Chassot P-G, Toussignant C. Basic principles of Doppler ultrasound. In: Denault AY, Couture P, Vegas A, Buithieu J, Tardif J-C, editors. Transesophageal echocardiography multimedia manual: a perioperative transdisciplinary approach. 2nd ed. New York/London: Informa Healthcare; 2011. p. 19–49.

    Google Scholar 

  26. Gorcsan J, Tanaka H. Echocardiographic assessment of myocardial strain. J Am Coll Cardiol. 2011;58:1401–13.

    Article  PubMed  Google Scholar 

  27. Zagzebski JA. Image characteristics and artifacts. In: Essentials of ultrasound physics. St. Louis: Mosby; 1996. p. 123–47.

    Google Scholar 

  28. Thomas JD. The DICOM image formatting standard: what it means for echocardiographers. J Am Soc Echocardiogr. 1995;8:319–27.

    Article  CAS  PubMed  Google Scholar 

  29. Thomas JD, Adams DB, Devries S, et al. Guidelines and recommendations for digital echocardiography. J Am Soc Echocardiogr. 2005;18:287–97.

    Article  PubMed  Google Scholar 

  30. Pianykh OS. Digital Imaging and Communications in Medicine (DICOM): a practical introduction and survival guide. Berlin: Springer; 2008.

    Google Scholar 

  31. Evangelista A, Flachskampf F, Lancellotti P, et al. European Association of Echocardiography recommendations for standardization of performance, digital storage and reporting of echocardiographic studies. Eur J Echocardiogr. 2008;9:438–48.

    Article  PubMed  Google Scholar 

  32. Picard MH, Adams D, Bierig SM, et al. American Society of Echocardiography recommendations for quality echocardiography laboratory operations. J Am Soc Echocardiogr. 2011;24:1–10.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre C. Wong MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Wong, P.C. (2014). Science of Ultrasound and Echocardiography. In: Wong, P., Miller-Hance, W. (eds) Transesophageal Echocardiography for Congenital Heart Disease. Springer, London. https://doi.org/10.1007/978-1-84800-064-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-064-3_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-061-2

  • Online ISBN: 978-1-84800-064-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics