Skip to main content

Convergence of Measures

  • Chapter
  • 7509 Accesses

Part of the book series: Universitext ((UTX))

One focus of probability theory is distributions that are the result of an interplay of a large number of random impacts. Often a useful approximation can be obtained by taking a limit of such distributions, for example, a limit where the number of impacts goes to infinity. With the Poisson distribution, we have encountered such a limit distribution that occurs as the number of very rare events when the number of possibilities goes to infinity (see Theorem 3.7). In many cases, it is necessary to rescale the original distributions in order to capture the behaviour of the essential fluctuations, e.g., in the central limit theorem. While these theorems work with real random variables, we will also see limit theorems where the random variables take values in more general spaces such as, for example, the space of continuous functions when we model the path of the random motion of a particle.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

(2008). Convergence of Measures. In: Probability Theory. Universitext. Springer, London. https://doi.org/10.1007/978-1-84800-048-3_13

Download citation

Publish with us

Policies and ethics