Martingale Convergence Theorems and Their Applications

Part of the Universitext book series (UTX)

We became familiar with martingales X = (X n )n∈N0 as fair games and found that under certain transformations (optional stopping, discrete stochastic integral) martingales turn into martingales. In this chapter, we will see that under weak conditions (non-negativity or uniform integrability) martingales converge almost surely. Furthermore, the martingale structure implies L p -convergence under assumptions that are (formally) weaker than those of Chapter 7. The basic ideas of this chapter are Doob’s inequality (Theorem 11.2) and the upcrossing inequality (Lemma 11.3).


Trading Strategy Offspring Distribution Integrable Martingale Fair Game Martingale Convergence Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag London Limited 2008

Personalised recommendations