Skip to main content

Control Engineering and Systems Biology

  • Chapter

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 367))

Abstract

Engineers use feedback, both positive and negative, to perform a wide array of signaling functions. Biological systems are also faced with many of the same requirements In this tutorial we examine examples from different cellular signaling systems to show how biology also uses feedback paths to perform many of the same tasks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hartwell, L.H., Hopfield, J.J., Leibler, S., Murray, A.W.: From molecular to modular cell biology. Nature 402, 47–52 (1999)

    Article  Google Scholar 

  2. Pollard, T.D.: The cytoskeleton, cellular motility and the reductionist agenda. Nature 422, 741–745 (2003)

    Article  Google Scholar 

  3. Ideker, T., Galitski, T., Hood, L.: A new approach to decoding life: Systems biology. Annu. Rev. Genomics Hum. Genet. 2, 343–372 (2001)

    Article  Google Scholar 

  4. Kitano, H.: Systems biology: A brief overview. Science 295, 1662–1664 (2002)

    Article  Google Scholar 

  5. Wiener, N.: Cybernetics or Control and Communication in the Animal and the Machine, 2nd edn. MIT Press, New York (1961)

    MATH  Google Scholar 

  6. Wonham, W.M.: Linear Multivariable Control: A Geometric Approach, 3rd edn. Springer, New York (1985)

    MATH  Google Scholar 

  7. Venkatesh, K.V., Bhartiya, S., Ruhela, A.: Mulitple feedback loops are key to a robust dynamic performance of tryptophan regulation in Escherichia coli. FEBS Letters 563, 234–240 (2004)

    Article  Google Scholar 

  8. El-Samad, H., Goff, J.P., Khammash, M.: Calcium homeostasis and parturient hypocalcemia: An integral feedback perspective. J. Theor. Biol. 214, 17–29 (2002)

    Article  MathSciNet  Google Scholar 

  9. Saunders, P.T., Koeslag, J.H., Wessels, J.A.: Integral rein control in physiology. J. Theor. Biol. 194, 163–173 (1998)

    Article  Google Scholar 

  10. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell, 4th edn. Garland Science, New York (2002)

    Google Scholar 

  11. Levchenko, A., Bruck, J., Sternberg, P.W.: Scaffold proteins may biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties. Proc. Natl. Acad. Sci. USA 97, 5818–5823 (2000)

    Article  Google Scholar 

  12. Huang, C., Ferrell Jr, J.E.: Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc. Natl. Acad. Sci. USA 93, 10078–10083 (1996)

    Article  Google Scholar 

  13. Brightman, F.A., Fell, D.A.: Differential feedback regulation of the MAPK cascade underlies the quantitative differences in EGF and NGF signalling in PC12 cells. FEBS Lett. 482, 169–174 (2000)

    Article  Google Scholar 

  14. Hao, N., Yildirim, N., Wang, Y., Elston, T.C., Dohlman, H.G.: Regulators of G protein signaling and transient activation of signaling: Experimental and computational analysis reveals negative and positive feedback controls on G protein activity. J. Biol. Chem. 278, 46506–46515 (2003)

    Article  Google Scholar 

  15. Vinnicombe, G.: Feedback networks. In: Francis, B.A., Smith, M.C., Willems, J.C. (eds.) Contol of Uncertain Systems: Modelling, Approximation, and Design. LNCIS, pp. 371–387. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Thattai, M., van Oudenaarden, A.: Intrinsic noise in gene regulatory networks. Proc. Natl. Acad. Sci. USA 98, 8614–8619 (2001)

    Article  Google Scholar 

  17. Paulsson, J.: Summing up the noise in gene networks. Nature 427, 415–418 (2004)

    Article  Google Scholar 

  18. Morishita, Y., Kobayashi, T.J., Aihara, K.: Evaluation of the performance of mechanisms for noise attenuation in a single-gene expression. J. Theor. Biol. 235, 241–264 (2005)

    Article  MathSciNet  Google Scholar 

  19. El-Samad, H., Khammash, M.: Regulated degradation is a mechanism for suppressing stochastic fluctuations in gene regulatory networks. Biophys. J. 90, 3749–3761 (2006)

    Article  Google Scholar 

  20. Alon, U., Surette, M.G., Barkai, N., Leibler, S.: Robustness in bacterial chemotaxis. Nature 397, 168–171 (1999)

    Article  Google Scholar 

  21. von Dassow, G., Meir, E., Munro, E.M., Odell, G.M.: The segment polarity network is a robust developmental module. Nature 406, 188–192 (2000)

    Article  Google Scholar 

  22. Eldar, A., Dorfman, R., Weiss, D., Ashe, H., Shilo, B.-Z., Barkai, N.: Robustness of the BMP morphogen gradient in Drosophila embryonic patterning. Nature 419, 304–308 (2002)

    Article  Google Scholar 

  23. Yi, T.M., Huang, Y., Simon, M.I., Doyle, J.: Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc. Natl. Acad. Sci. USA 97, 4649–4653 (2000)

    Article  Google Scholar 

  24. Yang, L., Iglesias, P.A.: Positive feedback may cause the biphasic response observed in the chemoattractant-induced response of Dictyostelium cells. Systems & Control Letters 55, 329–337 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Barkai, N., Leibler, S.: Robustness in simple biochemical networks. Nature 387, 913–917 (1997)

    Article  Google Scholar 

  26. Iglesias, P.A., Levchenko, A.: A general framework for achieving integral control in chemotactic biological signaling mechanisms. In: Proc. Conf. Decision and Control, Orlando, FL, pp. 843–848 (2001)

    Google Scholar 

  27. Keener, J.P., Sneyd, J.: Mathematical Physiology. Springer, New York (1998)

    MATH  Google Scholar 

  28. Bennett, S.: A History of Control Engineering, pp. 1800–1930. Peter Peregrinus, Stevenage (1979)

    Google Scholar 

  29. Shvartsman, S.Y., Hagan, M.P., Yacoub, A., Dent, P., Wiley, H.S., Lauffenburger, D.A.: Autocrine loops with positive feedback enable context-dependent cell signaling. Amer. J. Phys. Cell Phys. 282, 545–559 (2002)

    Google Scholar 

  30. Chaves, M., Sontag, E., Dinerstein, R.J.: Optimal length and signal amplification in weakly activated signal transduction cascades. J. Phys. Chem. B 108, 15311–15320 (2004)

    Article  Google Scholar 

  31. Mayawala, K., Gelmi, C.A., Edwards, J.S.: MAPK cascade possesses decoupled controllability of signal amplification and duration. Biophys. J. 87, L01–2 (2004)

    Article  Google Scholar 

  32. Sedra, A., Smith, K.: Microelectronic Circuits, 5th edn. Oxford University Press, New York (2004)

    Google Scholar 

  33. Angeli, D., Ferrell Jr., J.E., Sontag, E.D.: Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc. Natl. Acad. Sci. USA 101, 1822–1827 (2004)

    Article  Google Scholar 

  34. Pomerening, J.R., Sontag, E.D., Ferrell Jr., J.E.: Building a cell cycle oscillator: Hysteresis and bistability in the activation of Cdc2. Nature Cell Biology 5, 346–351 (2003)

    Article  Google Scholar 

  35. Xiong, W., Ferrell Jr., J.E.: A positive-feedback-based bistable ‘memory module’ that governs a cell fate decision. Nature 426, 460–465 (2003)

    Article  Google Scholar 

  36. Meinhardt, H.: Orientation of chemotactic cells and growth cones: Models and mechanisms. J. Cell Science 112, 2867–2874 (1999)

    Google Scholar 

  37. Narang, A., Subramanian, K.K., Lauffenburger, D.A.: A mathematical model for chemoattractant gradient sensing based on receptor-regulated membrane phospholipid signaling dynamics. Ann. Biomedical Eng. 29, 677–691 (2001)

    Article  Google Scholar 

  38. Postma, M., Van Haastert, P.J.: A diffusion-translocation model for gradient sensing by chemotactic cells. Biophys. J. 81, 1314–1323 (2001)

    Article  Google Scholar 

  39. Goldbeter, A.: Computational approaches to cellular rhythms. Nature 420, 238–245 (2002)

    Article  Google Scholar 

  40. Martiel, J.L., Goldbeter, A.: Autonomous chaotic behaviour of the slime mould Dictyostelium discoideum predicted by a model for cyclic AMP signalling. Nature 313, 590–592 (1985)

    Article  Google Scholar 

  41. Goldbeter, A.: Mechanism for oscillatory synthesis of cyclic AMP in Dictyostelium discoideum. Nature 253, 540–542 (1975)

    Article  Google Scholar 

  42. Hofer, T., Sherratt, J.A., Maini, P.K.: Dictyostelium discoideum: Cellular selforganization in an excitable biological medium. Proc. Biol. Sci. 259, 249–257 (1995)

    Article  Google Scholar 

  43. Levine, H., Aranson, I., Tsimring, L., Truong, T.V.: Positive genetic feedback governs cAMP spiral wave formation in Dictyostelium. Proc. Natl. Acad. Sci. USA 93, 6382–6386 (1996)

    Article  Google Scholar 

  44. Halloy, J., Lauzeral, J., Goldbeter, A.: Modeling oscillations and waves of cAMP in Dictyostelium discoideum cells. Biophys. Chem. 72, 9–19 (1998)

    Article  Google Scholar 

  45. Laub, M.T., Loomis, W.F.: A molecular network that produces spontaneous oscillations in excitable cells of Dictyostelium. Mol. Biol. Cell 9, 3521–3532 (1998)

    Google Scholar 

  46. Iglesias, P.A.: Feedback control in intracellular signaling pathways: Regulating chemotaxis in Dictyostelium discoideum. Eur. J. Control 9, 216–225 (2003)

    Google Scholar 

  47. Tomchik, K.J., Devreotes, P.N.: Adenosine 3’,5’-monophosphate waves in Dictyostelium discoideum: A demonstration by isotope dilution-fluorography. Science 12, 443–446 (1981)

    Article  Google Scholar 

  48. Kessin, R.H.: Dictyostelium: Evolution, Cell Biology, and the Development of Multicellularity. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  49. Ingalls, B.P., Yi, T.-M., Iglesias, P.A.: Using control theory to study biology. In: Szallasi, Z., Stelling, J., Periwal, V. (eds.) System Modeling in Cellular Biology, pp. 243–267. MIT Press, Cambridge (2006)

    Google Scholar 

  50. Parent, C.A., Devreotes, P.N.: A cell’s sense of direction. Science, 765–770 (1999)

    Google Scholar 

  51. Levchenko, A., Iglesias, P.A.: Models of eukaryotic gradient sensing: Application to chemotaxis of amoebae and neutrophils. Biophys. J. 82, 50–63 (2002)

    Google Scholar 

  52. Ma, L., Janetopoulos, C., Yang, L., Devreotes, P.N., Iglesias, P.A.: Two complementary, local excitation, global inhibition mechanisms acting in parallel can explain the chemoattractant-induced regulation of PI(3,4,5)P3 response in Dictyostelium cells. Biophys. J. 87, 3764–3774 (2004)

    Article  Google Scholar 

  53. Manahan, C.L., Iglesias, P.A., Long, Y., Devreotes, P.N.: Chemoattractant signaling in Dictyostelium discoideum. Annu. Rev. Cell Dev. Biol. 20, 223–253 (2004)

    Article  Google Scholar 

  54. Krishnan, J., Iglesias, P.A.: Analysis of the signal transduction properties of a module of spatial sensing in eukaryotic chemotaxis. Bull. Math. Biol. 65, 95–128 (2003)

    Article  Google Scholar 

  55. Kutscher, B., Devreotes, P., Iglesias, P.A.: Local excitation, global inhibition mechanism for gradient sensing: An interactive applet. Sci. STKE, p. PL3 (2004)

    Google Scholar 

  56. Janetopoulos, C., Ma, L., Devreotes, P.N., Iglesias, P.A.: Chemoattractant-induced phosphatidylinositol 3,4,5-trisphosphate accumulation is spatially amplified and adapts, independent of the actin cytoskeleton. Proc. Natl. Acad. Sci. USA 101, 8951–8956 (2004)

    Article  Google Scholar 

  57. Krishnan, J., Iglesias, P.A.: A modeling framework describing the enzyme regulation of membrane lipids underlying gradient perception in Dictyostelium cells. J. Theor. Biol. 229, 85–99 (2004)

    Article  MathSciNet  Google Scholar 

  58. Krishnan, J., Iglesias, P.A.: A modelling framework describing the enzyme regulation of membrane lipids underlying gradient perception in Dictyostelium cells II: Input-output analysis. J. Theor. Biol. 235, 504–520 (2005)

    Article  MathSciNet  Google Scholar 

  59. Amonlirdviman, K., Khare, N.A., Tree, D.R.P., Chen, W.-S., Axelrod, J.D., Tomlin, C.J.: Mathematical modeling of planar cell polarity to understand domineering nonautonomy. Science, 423–426 (2005)

    Google Scholar 

  60. El-Samad, H., Kurata, H., Doyle, J.C., Gross, C.A., Khammash, M.: Surviving heat shock: Control strategies for robustness and performance. Proc. Natl. Acad. Sci. USA 102, 2736–2741 (2005)

    Article  Google Scholar 

  61. Iglesias, P.A., Levchenko, A.: Modeling the cell’s guidance system. Sci. STKE, p. RE12 (2002)

    Google Scholar 

  62. Effler, J.C., Iglesias, P.A., Robinson, D.N.: Regulating cell shape during cytokinesis. In: Francis, B.A., Smith, M.C., Willems, J.C. (eds.) Contol of Uncertain Systems: Modelling, Approximation, and Design. LNCIS, pp. 203–224. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  63. Effler, J.C., Kee, Y.-S., Berk, J.M., Tran, M.N., Iglesias, P.A., Robinson, D.N.: Mitosis-sspecific mechanosensing and contractile-protein redistribution control cell shape. Current Biology 16(19) (2006)

    Google Scholar 

  64. Morohashi, M., Winn, A.E., Borisuk, M.T., Bolouri, H., Doyle, J., Kitano, H.: Robustness as a measure of plausibility in models of biochemical networks. J. Theor. Biol. 216, 19–30 (2002)

    Article  MathSciNet  Google Scholar 

  65. Ma, L., Iglesias, P.A.: Quantifying robustness of biochemical network models. BMC Bioinformatics, p. 38 (2002)

    Google Scholar 

  66. Stelling, J., Gilles, E.D., Doyle 3rd, F.J.: Robustness properties of circadian clock architectures. Proc. Natl. Acad. Sci. USA 101, 13210–13215 (2004)

    Article  Google Scholar 

  67. Prill, R.J., Iglesias, P.A., Levchenko, A.: Dynamic properties of network motifs contribute to biological network organization. PLoS Biol., vol. 3, p. e343 (2005)

    Google Scholar 

  68. Kim, J., Bates, D.G., Postlethwaite, I., Ma, L., Iglesias, P.A.: Robustness analysis of biochemical network models. IEEE Proc. Systems Biol. 152, 96–104 (2006)

    Article  Google Scholar 

  69. Angeli, D., Sontag, E.D.: Monotone control systems. IEEE Trans. Automat. Control 48, 1684–1698 (2003)

    Article  MathSciNet  Google Scholar 

  70. Angeli, D., Ferrell Jr, J.E., Sontag, E.D.: Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc. Natl. Acad. Sci. USA 101, 1822–1827 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Matthew C. Turner Declan G. Bates

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer London

About this chapter

Cite this chapter

Andrews, B.W., Iglesias, P.A. (2007). Control Engineering and Systems Biology. In: Turner, M.C., Bates, D.G. (eds) Mathematical Methods for Robust and Nonlinear Control. Lecture Notes in Control and Information Sciences, vol 367. Springer, London. https://doi.org/10.1007/978-1-84800-025-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-025-4_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-024-7

  • Online ISBN: 978-1-84800-025-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics