Skip to main content

Biofuels

  • Chapter
Biodiesel
  • 7068 Accesses

Abstract

The second chapter covers the main liquid biofuels such as bioethanol, biomethanol, liquid fuels from Fischer–Tropsch Synthesis (FTS), and bio-syngas and biohydrogen. Biomass energy technologies (liquefaction, pyrolysis and gasification), liquid biofuels (bioethanol and biomethanol) for automobiles from lignocellulosic materials by hydrolysis and fermentation, syngas by FTS, gasoline and diesel like oils by FTS, and biohydrogen from biomass by steam reforming have been investigated. Progress and recent trends in biofuels and global biofuel senarios have been presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adeeb Z. 2004. Glycerol delignification of poplar wood chips in aqueous medium. Energy Edu Sci Technol 13:81-88

    CAS  Google Scholar 

  • Ahón, V.R., Costa, E.F., Jr., Monteagudo, J.E.P., Fontes, C.E., Biscaia, E.C., Jr., Lage, P.L.C. 2005. A comprehensive mathematical model for the Fischer–Tropsch synthesis in well-mixed slurry reactors. Chem Eng Sci 60:677-694

    Article  Google Scholar 

  • Anderson, R.B. 1984. The Fischer–Tropsch Synthesis. Academic, New York

    Google Scholar 

  • Azar, C., Lindgren, K., Andersson, B.A. 2003. Global energy scenarios meeting stringent CO2 constraints—cost-effective fuel choices in the transportation sector. Energy Policy 31: 961-976

    Article  Google Scholar 

  • Bala, B.K. 2005. Studies on biodiesels from transformation of vegetable oils for diesel engines. Edu Sci Technol 15:1-45

    CAS  Google Scholar 

  • Balat, M. 2005. Biodiesel from vegetable oils via transesterification in supercritical ethanol. Energy Edu Sci Technol 16:45-52

    CAS  Google Scholar 

  • Balat, M. 2006. Sustainable transportation fuels from biomass materials. Energy Edu Sci Technol 17:83-103

    CAS  Google Scholar 

  • Baltz, R.A., Burcham, A.F., Sitton, O.C., Book, N.L. 1982. The recycling of sulfuric acid and xylose in the prehydrolysis of corn stover. Energy 7:259-265

    Article  CAS  Google Scholar 

  • Berg, C. 1988. Towards a world ethanol market? F.O. Licht Commodity Analysis, Ratzeburg, Germany.

    Google Scholar 

  • Bothast, R.J., Schlicher, M.A. 2005. Biotechnological processes for conversion of corn into ethanol. Appl Microbiol Biotechnol 67:19-25

    Article  CAS  Google Scholar 

  • Bowen, D.A., Lau, F., Zabransky, R., Remick, R., Slimane, R., Doong, S. 2003. Techno-economic analysis of hydrogen production by gasification of biomass. NREL 2003 progress report, Renewable Energy Laboratory, Golden, CO.

    Google Scholar 

  • Bridgwater, A.V. 2003. Renewable fuels and chemicals by thermal processing of biomass. Chem Eng J 91:87-102

    Article  CAS  Google Scholar 

  • Brown, H.P., Panshin, A. J., Forsaith, C.C. 1952. Textbook of wood technology, Vol. II. Hill, New York

    Google Scholar 

  • Bukur, D.B., Nowicki, L., Manne, R.V., Lang, X. 1995. Activation studies with a precipitated iron catalysts for the Fischer–Tropsch synthesis. J Catal 155:366-375

    Article  CAS  Google Scholar 

  • Cadenas, A., Cabezudo, S. 1998. Biofuels as sustainable technologies: perspectives for less developed countries. Technol Forecast Social Change 58:83–103

    Article  Google Scholar 

  • Canakci, M., Van Gerpen, J. 2001. Biodiesel production from oils and fats with high free fatty acids. Am Soc Agric Eng 4:1429-1436

    Google Scholar 

  • Castro, F.B., Hotten, P.M., Ørskov, E.R. 1993. The potential of dilute-acid hydrolysis as a treatment for improving the nutritional quality of industrial lignocellulosic by products. Animal Feed Sci Technol 42:39-53

    Article  CAS  Google Scholar 

  • Chmielniak, T., Sciazko, M. 2003. Co-gasification of biomass and coal for methanol synthesis. Energy 74:393-403

    CAS  Google Scholar 

  • Choudhary, T.V., Goodman, D.W. 2000. CO-free production of hydrogen via stepwise steam reforming of methane. J Catal 192:316-321

    Article  CAS  Google Scholar 

  • Davis, B.H. 2002. Overview of reactors for liquid phase Fischer–Tropsch synthesis. Catal Today 71:249-300

    Article  CAS  Google Scholar 

  • Demirbas, A. 1999. Fuel properties of charcoal derived from hazelnut shell and the production of briquets using pyrolytic oil. Energy 24:141-150

    Article  CAS  Google Scholar 

  • Demirbas, A. 2000. Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Convers Mgmt 41:633-646

    Article  CAS  Google Scholar 

  • Demirbas, A. 2002. Biodiesel from vegetable oils via transesterification in supercritical methanol. Energy Convers Mgmt 43:2349-2356

    Article  CAS  Google Scholar 

  • Demirbas, A. 2003. Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: a survey. Energy Convers Mgmt 44:2093-2109

    Article  CAS  Google Scholar 

  • Demirbas, A. 2004. Hydrogen rich gas from fruit shells via supercritical water extraction. Int J Hydrogen Energy 29:1237-1243

    Article  CAS  Google Scholar 

  • Demirbas, A. 2005. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Prog Energy Combust Sci 31:466-487

    Article  CAS  Google Scholar 

  • Demirbas, A. 2006a. Global biofuel strategies. Energy Edu Sci Technol 17:27-63.

    CAS  Google Scholar 

  • Demirbas, A. 2006b. Biogas potential of manure and straw mixtures. Energy Sour 28:71-78

    Article  CAS  Google Scholar 

  • Demirbas, M.F. 2006c. Hydrogen from various biomass species via pyrolysis and steam gasification processes. Energy Sour A 28:245-252

    Article  CAS  Google Scholar 

  • Demirbas, A., Arin, G. 2002. An overview of biomass pyrolysis. Energy Sour 5:471-482

    Article  Google Scholar 

  • Demirbas, M.F., Balat, M. 2006. Recent advances on the production and utilization trends of bio-fuels: a global perspective. Energy Convers Mgmt 47:2371-2381

    Article  CAS  Google Scholar 

  • Demirbas, A., Gullu, D. 1998. Acetic acid, methanol and acetone from lignocellulosics by pyrpolysis. Edu Sci Technol 1:111-115

    CAS  Google Scholar 

  • Difiglio, C. 1997. Using advanced technologies to reduce motor vehicle greenhouse gas emissions. Energy Policy 25:1173-1178

    Article  Google Scholar 

  • Dong, Y., Steinberg, M. 1997. Hynol—an economical process for methanol production from biomass and natural gas with reduced CO2 emission. Int J Hydrogen Energy 22:971-977

    Article  CAS  Google Scholar 

  • Dry, M.E. 1999. Fischer-Tropsch reactions and the environment. Appl Catal A General 189:185-190

    Article  CAS  Google Scholar 

  • Dry, M.E. 2002a. High quality diesel via the Fischer–Tropsch process-a review. J Chem Technol Biotechnol 77:43-50

    Article  CAS  Google Scholar 

  • Dry, M.E. 2002b. The Fischer–Tropsch process: 1950-2000. Catal Today 71:227-241.

    Article  CAS  Google Scholar 

  • Dry, M.E. 2004. Present and future applications of the Fischer-Tropsch process. Appl Catal A 276:1-3.

    Article  CAS  Google Scholar 

  • EC (European Commission). 2004. Promoting Biofuels in Europe. European Commission, Directorate -General for Energy and Transport, B-1049 Brussels, Belgium. http://europa.eu.int/comm/dgs/energy_transport/index_en.html.

    Google Scholar 

  • Encinar, J.M., Beltran, F.J., Ramiro, A., Gonzalez, J.F. 1998. Pyrolysis/gasification of agricultural residues by carbon dioxide in the presence of different additives: influence of variables. Fuel Process Technol 55:219-233.

    Article  CAS  Google Scholar 

  • Ghadge, S.V., Raheman, H. 2006. Process optimization for biodiesel production from mahua (Madhuca indica) oil using response surface methodology. Bioresour Technol 97:379-384.

    Article  CAS  Google Scholar 

  • Grassi, G. 1999. Modern bioenergy in the European Union. Renew Energy 6:985-990.

    Article  Google Scholar 

  • Gullu, D., Demirbas, A. 2001. Biomass to methanol via pyrolysis process. Energy Convers Mgmt 42:1349-1356.

    Article  CAS  Google Scholar 

  • Haas, M.J., McAloon, A.J., Yee, W.C., Foglia, T.A. 2006. A process model to estimate biodiesel production costs. Bioresour Technol 97:671-678.

    Article  CAS  Google Scholar 

  • Hall, D.O., Rosillo-Calle, F., Williams, R.H., Woods, J. 1993. Biomass for energy: supply prospects: Johansson, T.B., Kelly, H., Reddy, A.K.N., Williams, R.H. (eds.) Renewable Energy–for Fuels and Electricity. Island Press, Washington, D.C.

    Google Scholar 

  • Hansen, A.C., Zhang, Q., Lyne, P.W.L. 2005. Ethanol–diesel fuel blends—a review. Technology 96:277-285.

    CAS  Google Scholar 

  • Hao, X.H., Guo, L.J. 2002. A review on investigation of hydrogen production by biomass catalytic gasification in supercritical water. Huagong Xuebao 53:221-8 [in Chinese].

    CAS  Google Scholar 

  • IEA (International Energy Agency). 2004. Biofuels for transport: an international perspective. 9, rue de la Fédération, 75739 Paris, cedex 15, France. www.iea.org.

    Google Scholar 

  • IPCC. 1997. Greenhouse Gas Inventory Reference Manual: Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, Report Vol. 3, p. 1.53, Intergovernmental Panel on Climate Change (IPCC), Paris, France. www.ipcc.ch/pub/guide.htm.

    Google Scholar 

  • Iwasa, N., Kudo, S., Takahashi, H., Masuda, S., Takezawa, N. 1993. Highly selective supported Pd catalysts for steam reforming of methanol. Catal Lett 19:211-216.

    Article  CAS  Google Scholar 

  • Jager, B. 1998. Proceedings of the 5th Natural Gas Conversion Symposium, Taormina, Italy, September 1998.

    Google Scholar 

  • Jin, Y., Datye, A.K. 2000. Phase transformations in iron Fischer–Tropsch catalysts during temperature-programmed reduction. J Catal 196:8-17.

    Article  CAS  Google Scholar 

  • Jothimurugesan, K., Goodwin, J.G., Santosh, S.K., Spivey, J.J. 2000. Development of Fe Fischer–Tropsch catalysts for slurry bubble column reactors. Catal Today 58:335-344.

    Article  CAS  Google Scholar 

  • Jun, K.W., Roh, H.S., Kim, K.S., Ryu, J.S., Lee, K.W. 2004. Catalytic investigation for Fischer–Tropsch synthesis from bio-mass derived syngas. Appl Catal A 259:221-226.

    Article  CAS  Google Scholar 

  • Kapdi, S.S., Vijay, V.K., Rajesh, S.K., Prasad, R. 2005. Biogas scrubbing, compression and storage: perspective and prospectus in Indian context. Renew Energy 30:1195-1202.

    Article  CAS  Google Scholar 

  • Kartha, S., Larson, E.D. 2000. Bioenergy primer: modernised biomass energy for sustainable development, Technical Report UN Sales Number E.00.III.B.6, United Nations Development Programme, 1 United Nations Plaza, New York, NY 10017.

    Google Scholar 

  • Kim, S., Dale, B.E. 2005. Life cycle assessment of various cropping systems utilized for producing: bioethanol and biodiesel. Biomass Bioenergy 29:426-439.

    Article  Google Scholar 

  • Kumar, A., Cameron, J.B., Flynn, P.C. 2005. Pipeline transport and simultaneous saccharification of corn stover. Bioresour Technol 96:819-829.

    Article  CAS  Google Scholar 

  • Larson, E. D, Jin H. 1999. In: Overend, R., Chornet, E. (eds.) Proceedings of the 4th Biomass Conference of the Americas, Kidlington, UK, 29 August 1999, Elsevier, Amsterdam.

    Google Scholar 

  • Lee, K.-W., Kim, S.-B., Jun, K.-W., Choi, M.-J. 2001. In: Williams, D.J., Durie, R.A., McMullan, P., Paulson, A.J., Smith, A.Y. (eds.) Proceedings of the 5th International Conference on Greenhouse Gas Control Technology, Cairns, Australia, 13 August 2000, CSIRO.

    Google Scholar 

  • Li, S., Krishnamoorthy, S., Li, A., Meitzner, G.D., Iglesia, E. 2002. Promoted iron-based catalysts for the Fischer–Tropsch synthesis: design, synthesis, site densities, and catalytic properties. J Catal 206:202-217.

    Article  CAS  Google Scholar 

  • MacLean, H.L., Lave, L.B. 2003. Evaluating automobile fuel/propulsion system technologies. Energy Combust Sci 29:1-69.

    Article  CAS  Google Scholar 

  • Madras, G., Kolluru, C., Kumar, R. 2004. Synthesis of biodiesel in supercritical fluids. Fuel 83:2029-2033.

    Article  CAS  Google Scholar 

  • Maschio, G., Lucchesi, A., Stoppato, G. 1994. Production of syngas from biomass. Bioresour Technol 48:119-126.

    Article  CAS  Google Scholar 

  • Matsumura, Y., Minowa, T. 2004. Fundamental design of a continuous biomass gasification process using a supercritical water fluidized bed. Int J Hydrogen Energy 29:701-707.

    Article  CAS  Google Scholar 

  • May, M. 2003. Development and demonstration of Fischer–Tropsch fueled heavy-duty vehicles with control technologies for reduced diesel exhaust emissions. 9th Diesel Engine Emissions Reduction Conference. Newport, RI, 24-28 August 2003.

    Google Scholar 

  • McKendry, P. 2002. Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37-46.

    Article  CAS  Google Scholar 

  • Meher, L.C., Sagar, D.V., Naik, S.N. 2006. Technical aspects of biodiesel production by transesterification—a review. Renew Sustain Energy Rev 10:248-268.

    Article  CAS  Google Scholar 

  • Mirzaei, A.A., Habibpour, R., Faizi, M., Kashi, E. 2006. Characterization of iron-cobalt oxide catalysts: effect of different supports and promoters upon the structure and morphology of precursors and catalysts. Appl Catal A General 301:272-283.

    Article  CAS  Google Scholar 

  • Nath, K., Das, D. 2003. Hydrogen from biomass. Curr Sci 85:265-271.

    CAS  Google Scholar 

  • Ouellette, N., Rogner, H.-H., Scott, D.S. 1997. Hydrogen-based industry from remote excess hydroelectrıcıty. Int J Hydrogm Energy 22:397-403.

    Article  CAS  Google Scholar 

  • Phillips, V.D., Kinoshita, C.M., Neill, D.R., Takashi, P.K. 1990. Thermochemical production of methanol from biomass in Hawaii. Appl Energy 35:167-175.

    Article  CAS  Google Scholar 

  • Prakash, C.B. 1998. A critical review of biodiesel as a transportatıon fuel in Canada. A Technical Report. GCSI - Global Change Strategies International, Canada.

    Google Scholar 

  • Prins, M.J., Ptasinski, K.J., Janssen, F.J.J.G. 2004. Exergetic optimisation of a production process of Fischer–Tropsch fuels from biomass. Fuel Process Technol 86:375-389.

    Article  Google Scholar 

  • Puhan, S., Vedaraman, N., Rambrahaman, B.V., Nagarajan, G. 2005. Mahua (Madhuca indica) seed oil: a source of renewable energy in India. J Sci Ind Res 64:890-896.

    CAS  Google Scholar 

  • Puppan, D. 2002. Environmental evaluation of biofuels. Periodica Polytechnica Ser Soc Man Sci 10:95-116.

    Google Scholar 

  • Reijnders, L. 2006. Conditions for the sustainability of biomass based fuel use. Energy Policy 34:863-876.

    Article  Google Scholar 

  • Rao, V.U.S., Stiegel, G.J., Cinquergrane, G.J., Srivastava, R.D. 1992. Iron-based catalysts for slurry-phase Fischer-Tropsch process: Technology review. Fuel Process Technol 30: 83-107.

    Article  CAS  Google Scholar 

  • Rapagna, S., Jand, N., Foscolo, P.U. 1998. Catalytic gasification of biomass to produce hydrogen rich gas. Int J Hydrogen Energy 23:551-557.

    Article  CAS  Google Scholar 

  • Rowell, R.M., Hokanson, A.E. 1979. Methanol from wood: a critical assessment. In: K.V. Sarkanen,. A. Tillman (eds.) Progress in Biomass Conversion. Vol. 1. Academic, New York.

    Google Scholar 

  • Santos, D.C.R.M., Lisboa, J.S., Passos, F.B., Noronha, F.B. 2004. Characterization of steam-reforming catalysts. Braz J Chem Eng 21:203-209.

    CAS  Google Scholar 

  • Schulz, H. 1999. Short history and present trends of FT synthesis. Appl Catal A General 186: 1-16.

    Article  CAS  Google Scholar 

  • Sheehan, J., Cambreco, V., Duffield, J., Garboski, M., Shapouri, H. 1998. An overview of biodiesel and petroleum diesel life cycles. A report by US Department of Agriculture and Energy, Washington, D.C., pp. 1-35.

    Google Scholar 

  • Sie, S. T., Krishna, R. 1999. Fundamentals and selection of advanced FT-reactors. Appl Catal General 186:55–70.

    Article  CAS  Google Scholar 

  • Sokhansanj, S., Turhollow, A., Cushman, J., Cundiff, J. 2002. Engineering aspects of collecting corn stover for bioenergy. Biomass Bioenergy 23:347-355.

    Article  Google Scholar 

  • Sorensen, H.A. 1983. Energy conversion systems. Wiley, New York.

    Google Scholar 

  • Spath, P.L., Mann, M.K. 2000. Life Cycle Assessment of hydrogen production via natural gas steam reforming. National Renewable Energy Laboratory, Golden, CO, TP-570-27637, November 2000.

    Google Scholar 

  • Spath, P.L., Dayton, D.C. 2003. Preliminary Screening — Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas. NREL/TP-510-34929.

    Google Scholar 

  • Specht, M., Bandi, A., Baumgart, F., Murray, C.N., Gretz, J. (eds.) 1999. Proceedings of the 4th International Conference on Greenhouse Gas Control Technologies.

    Google Scholar 

  • Stelmachowski, M., Nowicki, L. 2003. Fuel from the synthesis gas—the role of process engineering. Energy 74:85-93.

    CAS  Google Scholar 

  • Taherzadeh, M.J. 1999. Ethanol from Lignocellulose: Physiological effects of inhibitors and fermentation strategies. PhD thesis, Department of Chemical Reaction Engineering, Chalmers University of Technology, Göteborg, Sweden.

    Google Scholar 

  • Takezawa, N., Shimokawabe, M., Hiramatsu, H., Sugiura, H., Asakawa, T., Kobayashi, H. 1987. reforming of methanol over Cu/ZrO2. Role of ZrO2support. React Kinet Catal Lett 33:191-196.

    Article  CAS  Google Scholar 

  • Theander, O. 1985. In: Overand, R.P., Mile, T.A., Mudge, L.K. (eds.) Fundamentals of thermochemical biomass conversion. Elsevier, New York.

    Google Scholar 

  • Tijmensen, M.J.A., Faaij, A.P.C., Hamelinck, C.N., van Hardeveld, R.M.R. 2002. Exploration of the possibilities for production of Fischer Tropsch liquids and power via biomass gasification. Biomass Bioenergy 23:129-152.

    Article  CAS  Google Scholar 

  • Tran, D.Q., Charanjit, R. 1978. A kinetic model for pyrolysis of Douglas fir bark.Fuel 57:293-298

    Article  CAS  Google Scholar 

  • UNDP (United Nations Development Programme). 2000. World Energy Assessment. Energy and the Challenge of Sustainability, New York.

    Google Scholar 

  • Usta, N., Ozturk, E., Can, O., Conkur, E.S., Nas, S., Con, A.H., Can, A.C., Topcu, M. 2005. of biodiesel fuel produced from hazelnut soapstock/waste sunflower oil mixture in a diesel engine. Energy Convers Mgmt 46:741–755.

    Article  CAS  Google Scholar 

  • Vasudevan, P., Sharma, S., Kumar, A. 2005. Liquid fuel from biomass: an overview. J Sci Ind Res 64:822-831.

    CAS  Google Scholar 

  • Vosloo, A.C. 2001. Fischer–Tropsch: a futuristic view. Fuel Process Technol 71:149-155.

    Article  CAS  Google Scholar 

  • Wang, D., Czernik, S., Chornet, E. 1998. Production of hydrogen from biomass by catalytic steam reforming of fast pyrolysis oils. Energy Fuels 12:19–24.

    Article  Google Scholar 

  • Wang, D., Czernik, S., Montane, D., Mann, M., Chornet, E. 1997. Biomass to hydrogen via fast pyrolysis and catalytic steam reforming of the pyrolysis oil or its fractions. Ind Eng Chem Res 36:1507-1518.

    Article  CAS  Google Scholar 

  • Wu, B.S., Bai, L., Xiang, H.W., Li, Y.W., Zhang, Z.X., Zhong, B. 2004. An active iron catalyst containing sulfur for Fischer–Tropsch synthesis. Fuel 83:205–512.

    Article  CAS  Google Scholar 

  • Yoshida, T., Oshima, Y., Matsumura, Y. 2004. Gasification of biomass model compounds and real biomass in supercritical water. Biomass Bioenergy 26:71-78.

    Article  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer London

About this chapter

Cite this chapter

(2008). Biofuels. In: Biodiesel. Springer, London. https://doi.org/10.1007/978-1-84628-995-8_2

Download citation

Publish with us

Policies and ethics