Skip to main content

A Turing Test for Emergence

  • Chapter
  • First Online:

Part of the book series: Advanced Information and Knowledge Processing ((AI&KP))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen, P. B., Emmeche, C., Finnemann, N. O., and Christiansen, P. V. (2000). Downward Causation. Aarhus University Press, Aarhus, Denmark.

    Google Scholar 

  • Arthur, W. (1994). Inductive behaviour and bounded rationality. The American Economic Review, 84:406–411.

    Google Scholar 

  • Arthur, W. (1998). Modeling market mechanism with evolutionary games. Europhysics News, 29:51–54.

    Google Scholar 

  • Atay, F., and Josty, J. (2003). On the emergence of complex systems on the basis of the coordination of complex behaviors of their elements. Santa Fe Institute Working Paper, 04-02-005.

    Google Scholar 

  • Bedau, M. A. (1997). Weak emergence. In Tomberlin, J., editor, Philosophical Perspectives: Mind, Causation, and World, volume 11, pages 375–399. Blackwell Publishers, Oxford.

    Google Scholar 

  • Bickhard, M. H. (2000). Emergence. In Andersen, P. B., Emmeche, C., Finnemann, N. O., and Christiansen, P. V., editors, Downward Causation, pages 322–348. University of Aarhus Press, Aarhus, Denmark.

    Google Scholar 

  • Boschetti, F. (2005). Improved resource exploitation by collective intelligence. In Zerger, A. and Argent, R. M., editors, MODSIM 2005 International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand, December 2005, pages 518–523.ISBN:0-9758400-2-9.

    Google Scholar 

  • Butler, D. (2006). 2020 computing: Everything, everywhere. Nature, 440(7083):402–405.

    Article  Google Scholar 

  • Calude, C., Campbell, D. I., Svozil, K., and Stefanescu, D. (1995). Strong determinism vs. computability. In Depauli-Schimanovich, W., Koehler, E., and Stadler, F., editors, Downward Causation, pages 115–131. Kluwer Academic, Dordrecht.

    Google Scholar 

  • Campbell, D. T. (1974). Downward causation in hierarchically organized biological systems. In Ayala, F., and Dobzhansky, T., editors, Studies in the Philosophy of Biology, pages 179–186, University of California Press, Berkeley.

    Chapter  Google Scholar 

  • Chaitin, G. (1997). The Limits of Mathematics: A Course on Information Theory & Limits of formal reasoning. Springer, New York.

    MATH  Google Scholar 

  • Cooper, B., and Odifreddi, P. (2003). Incomputability in nature. In Cooper, S. B., and Goncharov, S. S., editors, Computability and Models, pages 137–160. Kluwer Academic, Dordrecht.

    Chapter  Google Scholar 

  • Corning, P. (2005). The re-emergence of emergence: a venerable concept in search of a theory. In Holistic Darwinism: Synergy, Cybernetics, and the Bioeconomics of Evolution. University of Chicago Press, Chicago.

    Chapter  Google Scholar 

  • Crutchfield, J. (1994a). Is anything ever new? Considering emergence. In Cowan, G., Pines, D., and Melzner, D., editors, Complexity: Metaphors, Models, and Reality, SFI Series in the Sciences of Complexity XIX, pages 479–497. Addison-Wesley, Redwood City.

    Google Scholar 

  • Crutchfield, J. P. (1994b). The calculi of emergence: Computation, dynamics, and induction. Physica D, 75:11–54.

    Article  Google Scholar 

  • Darley, V. (1994). Emergent phenomena and complexity. In Brooks, R., and Maes, P., editors, Proceedings of Artificial Life IV. MIT Press, Cambridge, MA.

    Google Scholar 

  • Emmeche, C., Koppe, S., and Stjernfelt, F. (2000). Levels, emergence, and three versions of downward causation. In Andersen, P. B., Emmeche, C., Finnemann, N. O., and Christiansen, P. V., editors, Downward Causation, pages 13–34. University of Aarhus Press, Aarhus, Denmark.

    Google Scholar 

  • Gardner, M. (1970). Mathematical games: The fantastic combinations of John Conway’s new solitaire game “Life.” Scientific American, 223:120–123.

    Article  Google Scholar 

  • Goldstein, J. (2002). The singular nature of emergent levels: Suggestions for a theory of emergence. Nonlinear Dynamics, Psychology, and Life Sciences, 6(4).

    Google Scholar 

  • Heylighen, F. (1991). Modelling emergence. World Futures: The Journal of General Evolution, 31(Special Issue on Emergence, G. Kampis, editor):89–104.

    Google Scholar 

  • Kauffman, S. (2000). Investigations. Oxford University Press.

    Google Scholar 

  • Kellett, O. (2006). A multi-faceted attack on the busy beaver problem. Master thesis, Rensselaer Polytechnic Institute, Troy, New York.

    Google Scholar 

  • Laughlin, R., and Pines, D. (2000). The theory of everything. Proceedings of the National Academy of Sciences, 97(1):28–31.

    Google Scholar 

  • Milner, R. (1993). Elements of interaction. Communications of the ACM Archive, 36(1):78–89.

    Article  Google Scholar 

  • Muggleton, S. (2006). 2020 computing: Exceeding human limits. Nature, 440(7083):409–410.

    Article  Google Scholar 

  • Ord, T. (2002). Hypercomputation: Computing more than the Turing machine. Technical report, University of Melbourne.

    Google Scholar 

  • Pattee, H. (1997). Causation, control, and the evolution of complexity. In Andersen, P. B., Emmeche, C., Finnemann, N. O., and Christiansen, P. V., editors, Downward Causation. University of Aarhus Press, Aarhus, Denmark.

    Google Scholar 

  • Pearl, J. (2000). Causality: Models, Reasoning and Inference. MIT Press, Cambridge, MA.

    MATH  Google Scholar 

  • Penrose, R. (1989). The Emperor’s New Mind: Concerning Computers, Minds, and the Laws of Physics. Vintage, London, Melbourne.

    MATH  Google Scholar 

  • Penrose, R. (1994). Shadows of the Mind: A Search for the Missing Science of Consciousness. Oxford University Press, Oxford.

    MATH  Google Scholar 

  • Rabinowitz, N. (2005). Emergence: An algorithmic formulation. PhD thesis, The University of Western Australia.

    Google Scholar 

  • Reynolds, C. W. (1987). Flocks, herds, and schools: A distributed behavioral model. Computer Graphics, 21(4):25–34.

    Article  Google Scholar 

  • Saygin, A., Cicekli, I., and Akman, V. (2000). Turing test: 50 years later. Minds and Machines, 10(4):463–518.

    Article  Google Scholar 

  • Shalizi, C. (2001). Causal Architecture, Complexity and Self-Organization in Time Series and Cellular Automata. PhD thesis, University of Michigan, Ann Arbor.

    Google Scholar 

  • Simonite, T. (2005). Seals net data from cold seas. Nature, 438:402–403.

    Article  Google Scholar 

  • Stannett, M. (2003). Computation and hypercomputation. Minds and Machines, 13(1):115–153.

    Article  Google Scholar 

  • Sterrett, S. (2000). Turing’s two tests for intelligence. Minds and Machines, 10(4):541–559.

    Article  Google Scholar 

  • Szalay, A., and Gray, J. (2006). 2020 computing: Science in an exponential world. Nature, 440(7083):409–410.

    Article  Google Scholar 

  • Turing, M. A. (1936). On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 42:230–265.

    MathSciNet  MATH  Google Scholar 

  • van Leeuwen, J., and Wiedermann, J. (2000). The Turing machine paradigm in contemporary computing. Technical Report UU-CS-2000-33, Institute of Information and Computing Sciences, Utrecht University.

    Google Scholar 

  • van Leeuwen, J., and Wiedermann, J. (2001a). Beyond the Turing limit–evolving interactive systems. In Pacholski, L. and Ruzicka, P., editors, Theory and Practice of Informatics, pages 90–109. Springer-Verlag, Berlin.

    Google Scholar 

  • van Leeuwen, J., and Wiedermann, J. (2001b). A computational model of interaction in embedded systems. Technical Report UU-CS-2001-02, Institute of Information and Computing Sciences, Utrecht University.

    Google Scholar 

  • van Leeuwen, J., and Wiedermann, J. (2003). The emergent computational potential of evolving artificial living systems. AI Communications, 15:205–215.

    MathSciNet  Google Scholar 

  • Verbaan, P., van Leeuwen, J., and Wiedermann, J. (2004). Lineages of automata—a model for evolving interactive systems. In Karhumaki, J., Maurer, H., Paun, G., and Rozenberg, G., editors, Theory Is Forever, pages 268–281. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Wiedermann, J. (2000). Fuzzy computations are more powerful than crisp ones. Technical Report V-828, Prague University.

    Google Scholar 

  • Wiedermann, J., and van Leeuwen, J. (2002). The emergent computational potential of evolving artificial living systems. AI Communications, 15(4):205–216.

    MathSciNet  Google Scholar 

  • Wikipedia (2007). Loebner prize—Wikipedia, the free encyclopedia, available at: http://en.wikipedia.org/wiki/loebner prize. [Online; accessed 25-January-2007].

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Boschetti, F., Gray, R. (2008). A Turing Test for Emergence. In: Prokopenko, M. (eds) Advances in Applied Self-organizing Systems. Advanced Information and Knowledge Processing. Springer, London. https://doi.org/10.1007/978-1-84628-982-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-982-8_15

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-981-1

  • Online ISBN: 978-1-84628-982-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics