Skip to main content

Part of the book series: Springer Series in Advanced Manufacturing ((SSAM))

  • 620 Accesses

Abstract

Instrumented indentation is one of the most commonly used methods to determine the mechanical properties of materials. This method is based on the penetration of a body with a known geometry into the material’s surface. Both the force (or load) necessary for this penetration and the depth of indentation have to be measured, either separately or simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9.4 References

  1. NPL 2006, ‘www.npl.co.uk’, National Physical Laboratory UK.

    Google Scholar 

  2. Mata, M. & Alcala, J. 2003, ‘Mechanical property evaluation through sharp indentations in elastoplastic and fully plastic contact regimes’, Journal of Materials Research, vol. 18, no. 7, pp. 1705–1709.

    Google Scholar 

  3. Oliver, W. C. & Pharr, G. M. 1992, ‘An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments’, Journal of Materials Research, vol. 7, no. 6, pp. 1564–1583.

    Article  Google Scholar 

  4. Synton-MDP 2006, ‘www.synton-mdp.ch’, Micro Diamond Points Schweiz.

    Google Scholar 

  5. Gere, J. M. 2001, Mechanics of Materials, Nelson Thormes, pp. 3–22. 5th SI Edition.

    Google Scholar 

  6. Alcala, J., Anglada, M. & Gonzales, P. M. 2003, ‘Advanced indentation testing, Training course in the frame of the EU Project RTN2-2001-00488 “Structural integrity of ceramic multilayers and coatings (SICMAC)”’.

    Google Scholar 

  7. Oliver, W. C. & Pharr, G. M. 2004, ‘Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology’, Journal of Materials Research, vol. 19, no. 1, pp. 3–20.

    Article  Google Scholar 

  8. Cheng, Y. T. & Cheng, C. M. 1998, ‘Relationships between hardness, elastic modulus, and the work of indentation’, Applied Physics Letters, vol. 73, no. 5, pp. 614–616.

    Article  Google Scholar 

  9. Miyake, K., Fujisawa, S., Korenaga, A., Ishida, T. & Sasaki, S. 2004, ‘The effect of pile-up and contact area on hardness test by nanoindentation’, Japanese Journal of Applied Physics, vol. 43, no. 7B, pp. 4602–4605.

    Article  Google Scholar 

  10. Franco, A. B., Pintaude, G., Sinatora, A., Pinedo, C. E. & Tschiptschin, A. P. 2004, ‘The use of a Vickers indenter in depth sensing indentation for measuring elastic modulus and Vickers hardness’, Materials Research, vol. 7, no. 3.

    Google Scholar 

  11. Pintaude, G., Cuppari, M. G. V., Schön, C. G., Sinatora, A. & Souza, R. M. 2005, ‘A review on the reverse analysis for the extraction of mechanical properties using instrumented Vickers indentation’, Zeitschrift für Metallkunde, vol. 96, pp. 1252–1255.

    Google Scholar 

  12. Zhao, M., Chen, X., Yan, J. & Karlsson, A. M. 2006, ‘Determination of uniaxial residual stress and mechanical properties by instrumented indentation’, Acta Materialia, vol. 54, pp. 2823–2832.

    Article  Google Scholar 

  13. Mircea, I. & Bartsch, M. 2005, ‘Modified indentation test to estimate fracture toughness of thick thermal barrier coating systems’, 11th International Conference on Fracture, on CD of the Proceedings.

    Google Scholar 

  14. Bartsch, M., Baufeld, B., Dalkilic, S., Mircea, I., Lambrinou, K., Leist, T., Yan, J. & Karlsson, A. M. 2007, ‘Time-economic lifetime assessment for high performance thermal barrier coating systems’, Key Engineering Materials, vol. 333, pp. 147–154.

    Article  Google Scholar 

  15. VanLandingham, M. R. 2003, ‘Review of instrumented indentation’, Journal of Research of the National Institute of Standards and Technology, vol. 108, no. 4, pp. 249–265.

    Google Scholar 

  16. Barthelat, F., Li, C. M., Comi, C. & Espinosa, H. D. 2006, ‘Mechanical properties of nacre constituents and their impact on mechanical performance’, Journal of Materials Research, vol. 21, no. 8, pp. 1977–1986.

    Article  Google Scholar 

  17. Chen, X., Yan, J. & Karlsson, A. M. 2006, ‘On the determination of residual stress and mechanical properties by indentation’, Materials Science and Engineering A, vol. 416, pp. 139–149.

    Article  Google Scholar 

  18. Vasinonta, A. & Beuth, J. L. 2001, ‘Measurement of interfacial toughness in thermal barrier coating systems by indentation’, Engineering Fracture Mechanics, vol. 68.

    Google Scholar 

  19. Pharr, G. M. 1998, ‘Measurement of mechanical properties by ultra-low load I ndentation’, Material Science and Engineering A, vol. 253, pp. 151–159.

    Article  Google Scholar 

  20. Schöberl, T. & Jäger, I. L. 2006, ‘Wet or dry — hardness, stiffness and wear resistance of biological materials on the micron scale’, Advanced Engineering materials, vol. 8, no. 11, pp. 1175–1179.

    Article  Google Scholar 

  21. Swadener, J. G., George, E. P. & Pharr, G. M. 2002, ‘The correlation of the indentation size effect measured with indenters of various shapes’, Journal of Mechanics and Physics of Solids, vol. 50, pp. 681–694.

    Article  MATH  Google Scholar 

  22. Swadener, J. G. & Pharr, G. M. 2000, in R. Vinci, O. Kraft, N. Moody, P. Besser & E. Shaffer (eds), Materials Research Society Symposium Proceedings 594, pp. 525–530.

    Google Scholar 

  23. Swadener, J. G., Taljat, B. & Pharr, G. M. 2001, ‘Measurement of residual stress by load and depth sensing indentation with spherical indenters’, Journal of Materials Research, vol. 16, no. 7, pp. 2091–2102.

    Google Scholar 

  24. CSM & Instruments 1999, ‘Nanoindentation with spherical indenters for characterization of stress-strain properties’, Applications Bulletin, no. 11.

    Google Scholar 

  25. Pajares, A., Wei, L., Lawn, B. R., Padture, N. T. & Berndt, C. C. 1996, ‘Mechanical characterization of plasma sprayed ceramic coatings on metal substrates by contact testing’, Materials Science and Engineering A, vol. 208, pp. 158–165.

    Article  Google Scholar 

  26. Fatikow, S. 2006, ‘Mikroboter weisen den Weg’, Mikroproduktion, vol. 4, pp. 60–62, in German.

    Google Scholar 

  27. Orthmann, K., Dorbath, B., Klatt, H., Richly, W. & Schmidt, J. 1995, Kleben in der Elektronik, number 472 in Kontakt&Studium, Expert Verlag, Kapitel 4: Grundlagen der Leitklebstoffe, pp. 71–94, in German.

    Google Scholar 

  28. Xu, X. S. 2002, ‘Evaluating thermal and mechanical properties of electrically conductive adhesives for electronic applications’, Ph.D. thesis, Virginia Polytechnic Institute and State University Blacksburg.

    Google Scholar 

  29. W.C. Heraues GmbH, Circuit Material Division, ‘www.4cmd.com’, Data sheet of the conductive adhesive PC3002.

    Google Scholar 

  30. Nascatec GmbH, ‘www.nascatec.de’.

    Google Scholar 

  31. Klocke Nanotechnik GmbH, ‘www.nanomotor.de’.

    Google Scholar 

  32. Burnham, N. A., Chen, X., Hodges, C. S., Matei, G. A., Thoreson, E. J., Roberts, C. J., Davies, M. C. & Tendler, S. J. B. 2003, ‘Comparison of calibration methods for atomic-force microscopy cantilevers’, Nanotechnology, vol. 14, pp. 1–6.

    Article  Google Scholar 

  33. Kray, S. 2006, ‘Internal Report, University of Oldenburg, Division Microbotics and Control Engineering’, in German.

    Google Scholar 

  34. Phataraloha, A., Büttgenbach, S., 2004, ‘A novel design and characterization of a micro probe based on a silicone membrane for dimensional metrology’, Proceedings of the 4th euspen International Conference, pp. 310–311.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Mircea, I., Sill, A. (2008). Material Nanotesting. In: Fatikow, S. (eds) Automated Nanohandling by Microrobots. Springer Series in Advanced Manufacturing. Springer, London. https://doi.org/10.1007/978-1-84628-978-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-978-1_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-977-4

  • Online ISBN: 978-1-84628-978-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics