Skip to main content

Nanostructuring and Nanobonding by EBiD

  • Chapter
Automated Nanohandling by Microrobots

Part of the book series: Springer Series in Advanced Manufacturing ((SSAM))

Abstract

Since 1974, when Taniguchi coined the expression nanotechnology [1] as a description of manufacturing processes, a lot of different techniques for manufacturing on this small scale have been developed. Until that time, manufacturing processes on the micrometer scale used to be the limit. Conventional semiconductor-processing technologies are mostly limited by the achievable resolution in lithography. However, this resolution depends on the wavelength of light — or, in general, on electromagnetic waves. In order to process materials on the nanometer scale, it is either necessary to develop a new approach in materials structuring (often referred to as the bottom-up approach) or to extend the possibilities of common techniques, for example by using electromagnetic waves with considerably shorter wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

10.8 References

  1. Taniguchi, N. 1974, ‘On the basic concept of nanotechnology’, Proc. Intl. Conf. Prod. Eng. Tokyo, vol. 2, pp 18–32.

    Google Scholar 

  2. Dujardin, G., Mayne, A., Robert, O., Rose, F., Joachim, C. & Tang, H. 1998, ‘Vertical manipulation of individual atoms by a direct STM tip-surface contact on Ge(111)’, Phys. Rev. Lett., vol. 80, no. 14, pp. 3085–3088.

    Article  Google Scholar 

  3. Utke, I., Bret, T., Laub, D., Buffat, P., Scandella, L. & Hoffmann, P. 2004, ‘Thermal effects during focused electron beam induced deposition of nanocomposite magneticcobalt-containing tips’, Microelectron. Eng., vol. 73–74, no. 1, pp. 553–558.

    Article  Google Scholar 

  4. Hoffmann, P., Utke, I. & Cicoira, F. 2002, ‘Limits of 3D nanostructures fabricated by focused electron beam (FEB) induced deposition’, 10th International Symposium on Nanostructures: Physics and Technology, vol. 5023, pp. 4–10.

    Google Scholar 

  5. Silvis-Cividjian, N., Hagen, C. W., Leunissen, L. H. A. & Kruit, P. 2002, ‘The role of secondary electrons in electron-beam-induced-deposition spatial resolution’, Microelectronic Engineering, vol. 61–62, pp. 693–699.

    Article  Google Scholar 

  6. Scheuer, V., Koops, H. & Tschudi, T. 1986, ‘Electron beam decomposition of carbonyls on silicon’, Microelectron. Eng., vol. 5, no. 1–4, pp. 423–430.

    Article  Google Scholar 

  7. Stewart, R. L. 1934, ‘Insulating films formed under electron and ion bombardment’, Phys. Rev., vol. 45, no. 7, pp. 488–490.

    Article  Google Scholar 

  8. Ennos, A. E. 1954, ‘The sources of electron-induced contamination in kinetic vacuum systems’, British Journal of Applied Physics, vol. 5, no. 1, pp. 27–31.

    Article  Google Scholar 

  9. Christy, R. W. 1960, ‘Formation of thin polymer films by electron bombardment’, Journal of Applied Physics, vol. 31, no. 9, pp. 1680–1683.

    Article  Google Scholar 

  10. Ling, J. 1966, ‘An approximate expression for the growth rate of surface contamination on electron microscope specimens’, British Journal of Applied Physics, vol. 17, no. 4, pp. 565–568.

    Article  Google Scholar 

  11. Broers, A. N., Molzen, W. W., Cuomo, J. J. & Wittels, N. D. 1976, ‘Electron-beam fabrication of 80-A metal structures’, Applied Physics Letters, vol. 29, no. 9, pp. 596–598.

    Article  Google Scholar 

  12. Koops, H. W. P., Weiel, R., Kern, D. P. & Baum, D. P. 1988, ‘High-resolution electron-beam induced deposition’, Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, vol. 6, no. 1, pp. 477–481.

    Article  Google Scholar 

  13. Griesinger, U. A., Kaden, C., Lichtenstein, N., Hommel, J., Lehr, G., Bergmann, R., Menschig, A., Schweizer, H., Hillmer, H., Koops, H. W. P., Kretz, J. & Rudolph, M. 1993, ‘Investigations of artificial nanostructures and lithography techniques with a scanning probe microscope’, Proceedings of the 16th international symposium on electron, ion, and photon beams, vol. 11, pp. 2441–2445.

    Google Scholar 

  14. Koops, H. W. P., Kretz, J., Rudolph, M. & Weber, M. 1993, ‘Constructive three-dimensional lithography with electron-beam induced deposition for quantum effect devices’, Proceedings of the 16th international symposium on electron, ion, and photon beams, vol. 11, pp. 2386–2389.

    Google Scholar 

  15. Weber, M., Rudolph, M., Kretz, J. & Koops, H. W. P. 1995, ‘Electron-beam induced deposition for fabrication of vacuum field emitter devices’, 7th International Vacuum Microelectronics Conference, vol. 13, pp. 461–464.

    Google Scholar 

  16. Koops, H. W. P., Kretz, J. & Rudolph, M. 1994, ‘Characterization and application of materials grown by electron-beam-induced deposition’, Jpn. J. Appl. Phys., vol. 33, no. Part 1, 12B, pp. 7099–7107.

    Article  Google Scholar 

  17. Kohlmann-von Platen, K. T., Buchmann, L.-M., Petzold, H.-C. & Brunger, W. H. 1992, ‘Electron-beam induced tungsten deposition: Growth rate enhancement and applications in microelectronics’, Proceedings of the 36th International Symposium on electron, iron, and photon beams, vol. 10, pp. 2690–2694.

    Google Scholar 

  18. Hübner, U., Plontke, R. & Blume, M. 2001, ‘On-line nanolithography using electron beam-induced deposition technique’, Microelectronic Engineering, vol. 57–58, pp. 953–958.

    Article  Google Scholar 

  19. Utke, I., Hoffmann, P., Berger, R. & Scandella, L. 2002, ‘High-resolution magnetic Co supertips grown by a focused electron beam’, Applied Physics Letters, vol. 80, no. 25, pp. 4792–4794.

    Article  Google Scholar 

  20. Liu, Z., Mitsuishi, K. & Furuya, K. 2004, ‘Three-dimensional nanofabrication by electron-beam-induced deposition using 200-keV electrons in scanning transmission electron microscope’, Applied Physics A: Materials Science & Processing, vol. 80, no. 7, pp. 1437–1441.

    Google Scholar 

  21. Utke, I., Luisier, A., Hoffmann, P., Laub, D. & Buffat, P. A. 2002, ‘Focused-electronbeam-induced deposition of freestanding three-dimensional nanostructures of pure coalesced copper crystals’, Applied Physics Letters, vol. 81, no. 17, pp. 3245–3247.

    Article  Google Scholar 

  22. Mølhave, K., Madsen, D. N., Dohn, S. & Bøggild, P. 2004, ‘Constructing, connecting and soldering nanostructures by environmental electron beam deposition’, Nanotechnology, vol. 15, no. 8, pp. 1047–1053.

    Article  Google Scholar 

  23. Wich, T. & Sievers, T. 2006, ‘Assembly inside a scanning electron microscope using electron beam induced deposition’, Proceedings of 2006 IEEE/RSJInternational Conference on Robots and Intelligent Systems.

    Google Scholar 

  24. Reimer, L. 1998, Scanning Electron Microscopy — Physics of Image Formation and Microanalysis, Vol. 45 of Springer Series in Optical Sciences, 2nd edn.

    Google Scholar 

  25. Balk, L. J., Blaschke, R., Bröcker, W., Demm, E., Engel, L., Göcke, R., Hantsche, H., Hauert, R., Krefting, E. R., Müller, T., Raith, H., Roth, M. & Woodtli, J., Praxis der Rasterelektronenmikroskopie und Mikrobereichsanalyse, Bartz, W. J.

    Google Scholar 

  26. Fuchs, E., Oppolenzer, H. & Rehme, H. 1990, Particle Beam Microanalysis (Fundamentals, Methods and Applications), VCH Weinheim.

    Google Scholar 

  27. Schiffmann, K. I. 1993, ‘Investigation of fabrication parameters for the electronbeam-induced deposition of contamination tips used in atomic force microscopy’, Nanotechnology, vol. 4, no. 3, pp. 163–169.

    Article  Google Scholar 

  28. Utke, I., Cicoira, F. & Jaenchen, G. 2002, ‘Focused electron beam induced deposition of high resolution magnetic scanning probe tips’, Mat. Res. Soc. Symp. Proc., vol. 706.

    Google Scholar 

  29. Seiler, H. 1983, ‘Secondary electron emission in the scanning electron microscope’, Journal of Applied Physics, vol. 54, no. 11, pp. R1–R18.

    Article  Google Scholar 

  30. Ono, S. & Kanaya, K. 1979, ‘The energy dependence of secondary emission based on the range-energy retardation power formula’, Journal of Physics D: Applied Physics, vol. 12, no. 4, pp. 619–632.

    Article  Google Scholar 

  31. Reimer, L. 1999, ‘SEM/TEM Hypertext: per Mausklick (fast) alles über Elektronenmikroskopie’. CD-ROM.

    Google Scholar 

  32. Hasselbach, F. & Rieke, I. 1982, ‘Spatial distribution of secondaries released by backscattered electrons in silicon and gold for 20–70 keV primary energy’, 10th International Conference on Electron Microscopy, Hamburg, vol. 1, pp. 253–254.

    Google Scholar 

  33. Kanaya, K. & Kawakatsu, H. 1972, ‘Secondary electron emission due to primary and backscattered electrons’, Journal of Physics D: Applied Physics, vol. 5, no. 9, pp. 1727–1742.

    Article  Google Scholar 

  34. Silvis-Cividjian, N. 2002, ‘Electron beam induced nanometer scale deposition’, Ph.D. thesis, Technische Universiteit Delft.

    Google Scholar 

  35. Wutz, M. 2004, Handbuch Vakuumtechnik, 8th edn, Vieweg Verlag.

    Google Scholar 

  36. Mølhave, K. 2006, ‘Tools for In situ Manipulation and characterisation of nanostructures’, Ph.D. thesis, MIC-Department of Micro and Nanotechnology, Technical University of Denmark.

    Google Scholar 

  37. James M. Lafferty (editor) 1998, Foundations of Vacuum Science and Technology, John Wiley and sons.

    Google Scholar 

  38. Utke, I., Friedli, V., Michler, J., Bret, T., Multone, X. & Hoffmann, P. 2006, ‘Density determination of focused-electron-beam-induced deposits with simple cantilever-based method’, Applied Physics Letters, vol. 88, no. 3, p. 031906.

    Article  Google Scholar 

  39. Randolph, S. J., Fowlkes, J. D. & Rack, P. D. 2005, ‘Effects of heat generation during electron-beam-induced deposition of nanostructures’, Journal of Applied Physics, vol. 97, no. 12, p. 124312.

    Article  Google Scholar 

  40. Becker, G. 1961, ‘Zur Theorie der Molekularstrahlerzeugung mit langen Kanälen’, Zeitschrift für Physik A, vol. 162, no. 3, pp. 290–312.

    Article  Google Scholar 

  41. Giordmaine, J. A. & Wang, T. C. 1960, ‘Molecular beam formation by long parallel tubes’, Journal of Applied Physics, vol. 31, no. 3, pp. 463–471.

    Article  Google Scholar 

  42. Jones, R. H., Olander, D. R. & Kruger, V. R. 1969, ‘Molecular-beam sources fabricated from multichannel arrays. I. Angular distributions and peaking factors’, Journal of Applied Physics, vol. 40, no. 11, pp. 4641–4649.

    Article  Google Scholar 

  43. Boero, G., Utke, I., Bret, T., Quack, N., Todorova, M., Mouaziz, S., Kejik, P., Brugger, J., Popovic, R. S. & Hoffmann, P. 2005, ‘Submicrometer Hall devices fabricated by focused electron-beam-induced deposition’, Applied Physics Letters, vol. 86, no. 4, p. 042503.

    Article  Google Scholar 

  44. Edinger, K., Becht, H., Bihr, J., Boegli, V., Budach, M., Hofmann, T., Koops, H. W. P., Kuschnerus, P., Oster, J., Spies, P. & Weyrauch, B. 2004, ‘Electron-beambased photomask repair’, The 48th International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication, vol. 22, pp. 2902–2906.

    Google Scholar 

  45. Bret, T., Utke, I., Bachmann, A. & Hoffmann, P. 2003, ‘In situ control of the focused-electron-beam-induced deposition process’, Applied Physics Letters, vol. 83, no. 19, pp. 4005–4007.

    Article  Google Scholar 

  46. Ding, W., Dikin, D. A., Chen, X., Piner, R. D., Ruoff, R. S., Zussman, E., Wang, X. & Li, X. 2005, ‘Mechanics of hydrogenated amorphous carbon deposits from electron-beam-induced deposition of a paraffin precursor’, Journal of Applied Physics, vol. 98, no. 1, p. 014905.

    Article  Google Scholar 

  47. Utke, I., Friedli, V. & Fahlbusch, S. 2006, ‘Tensile strengths of metal-containing joints fabricated by focused electron beam induced deposition’, Advanced Engineering Materials, vol. 8, no. 3, pp. 137–140.

    Article  Google Scholar 

  48. Wich, T., Kray, S. & Fatikow, S. 2006, ‘Microrobot based testing of nanostructures inside an SEM’, Proceedings of the 10th International Conference on New Actuators (Actuator).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Wich, T. (2008). Nanostructuring and Nanobonding by EBiD. In: Fatikow, S. (eds) Automated Nanohandling by Microrobots. Springer Series in Advanced Manufacturing. Springer, London. https://doi.org/10.1007/978-1-84628-978-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-978-1_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-977-4

  • Online ISBN: 978-1-84628-978-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics