Skip to main content

Sedative Hypnotic and Anesthetic Agents: Their Effect on the Heart

  • Chapter
  • 1306 Accesses

Propofol is a nonopioid, nonbarbiturate sedative hypnotic used extensively as an induction agent for general anesthesia and as a sedative in intensive care units (ICUs). The prompt recovery without residual sedation and low incidence of nausea and vomiting make propofol an appropriate choice for use in ambulatory surgery procedures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fulton B, Sorkin EM. Propofol: an overview of its pharmacology and a review of its clinical efficacy in intensive care sedation. Drugs 1995; 50:636–657.

    Article  PubMed  CAS  Google Scholar 

  2. Bryson HM, Fulton BR, Faulds D. Propofol: an update of its use in anesthesia and conscious sedation. Drugs 1995; 50:513–559.

    Article  PubMed  CAS  Google Scholar 

  3. Coates DP, Monk CR, Prys-Roberts C, et al. Hemodynamic effects of the infusion of the emulsions formulation of propofol during nitrous oxide anesthesia in humans. Anesth Analg 1987; 66:64–70.

    Article  PubMed  CAS  Google Scholar 

  4. Wagner BK, O’Hara DA. Pharmacokinetics and pharmacodynamics of sedatives and analgesics in the treatment of agitated critically ill patients. Clin Pharmacokinet 1997; 33:426–453.

    Article  PubMed  CAS  Google Scholar 

  5. Saarnivaara L, Hiller A, Oikkonem M. QT interval, heart rate and arterial pressures using propofol, thiopentone or methohexitone for induction of anesthesia in children. Acta Anaesthesiology Scand 1993; 37:419–423.

    Article  CAS  Google Scholar 

  6. Deutschman CS, Harris AP, Fleisher LA. Changes in heart rate variability under propofol anesthesia: a possible explanation for propofol-induced bradycardia. Anesth Analg 1994; 79:373–377.

    PubMed  CAS  Google Scholar 

  7. Aun CS, Sung RY, O’Meara ME, et al. Cardiovascular effects of I.V. induction in children; Comparison between propofol and thiopentone. Br J Anaesth 1993; 70:647–653.

    Article  PubMed  CAS  Google Scholar 

  8. James MK, Feldman PL, Schuster SV, et al. Opioid receptor activity of GI 87084B, a novel ultra-short acting analgesic, in isolated tissues. J Pharmacol Exp Ther 1991; 259:712–718.

    PubMed  CAS  Google Scholar 

  9. James MK, Vuong A, Grizzle MK, et al. Hemodynamic effects of GI 87084B, an ultra-short acting mu-opioid analgesic, in anesthetized dogs. J Pharmacol Exp Ther 1992; 263:84–91.

    PubMed  CAS  Google Scholar 

  10. Amin HM, Sopchak AM, Esposito BF, et al. Naloxone reversal of depressed ventilatory response to hypoxia during continuous infusion of remifentanil [Abstract] 1993; 79:A1203.

    Google Scholar 

  11. Glass PSA. Remifentanil: a new opioid. J Clin Anesth 1995; 7:558–563.

    Article  PubMed  CAS  Google Scholar 

  12. Ansermino JM, Brooks P, Rosen D, et al. Spontaneous ventilation with remifentanil in children. Paediatr Anaesth 2005; 15:115–121.

    Article  PubMed  Google Scholar 

  13. Chanavaz C, Tirel O, Wodey E, et al. Haemodynamic effects of remifentanil in children with and without intravenous atropine. An echocardiographic study. Paediatr Anaesth 2005; 94:74–79.

    CAS  Google Scholar 

  14. Herz A, Teschenmacher HJ. Activities and sites of antinociceptive action of morphine-like analgesics and kinetics of distribution following intravenous intracerebral and intraventricular application. Advance Drug Research 1971; 6:79–119.

    CAS  Google Scholar 

  15. Mather LE. Clinical pharmacokinetics of fentanyl and its newer derivatives. Clinical Pharmacokinetics 1983; 8:422–426.

    Article  PubMed  CAS  Google Scholar 

  16. Stanley TH, Webster LR. Anesthetic requirements and cardiovascular effects of fentanyl-oxygen and fentanyl-diazepam-oxygen anesthesia in man. Anesth Analg 1978; 57:411–416.

    PubMed  CAS  Google Scholar 

  17. Hickey P, Hansen D, Wessel D. Pulmonary and systemic hemodynamic responses to fentanyl in infants. Anesth Analg 1985; 64:483–486.

    PubMed  CAS  Google Scholar 

  18. Mantegazza P, Parenti M, Tammiso R, et al. Modification of the antinociceptive effects of morphine by centrally administered diazepam and midazolam. Brit J Pharmacol 1982; 75:569–572.

    CAS  Google Scholar 

  19. Burtin P, Jacqz-Aigrain E, Girar P, et al. Population pharmacokinetics of midazolam in neonates. Clin Pharmacol Ther 1994; 56(6 Pt 1):615–625.

    Google Scholar 

  20. Forster A, Gardaz JP, Suter PM, et al. IV Midazolam as an induction agent for anaesthesia: a study in volunteers. Br J Anaesth 1980; 52:907–911.

    Article  PubMed  CAS  Google Scholar 

  21. Reves JG, Samuelson PN, Lewis S. Midazolam maleate induction in patients with ischaemic heart disease: haemodynamic observations. Can Anaesth Soc J 1979; 26:402–409.

    Article  PubMed  CAS  Google Scholar 

  22. Morel D, Forster A, Bachmann M, et al. Changes in breathing pattern induced by midazolam in normal subjects (Abstract). Anesthesiology 1982; 57:A481.

    Article  Google Scholar 

  23. Eger EI II, Bahlman SH, Munson ES. The effect of age on the rate of increase of alveolar anesthetic concentration. Anesthesiology 1971; 35:365–372.

    PubMed  CAS  Google Scholar 

  24. Rampil IJ, Mason P, Singh H. Anesthetic potency (MAC) is independent of forebrain structures in the rat. Anesthesiology 1993; 78:707–712.

    Article  PubMed  CAS  Google Scholar 

  25. Violet JM, Downie DL, Nakisa RC, et al. Differential sensitivities of mammalian neuronal and muscle nicotinic acetylcholine receptors to general anesthetics. Anesthesiology 1997; 86:866–874.

    Article  PubMed  CAS  Google Scholar 

  26. Kelly RE, Lien CA, Savarese JJ, et al. Depression of neuromuscular function in a patient during desflurane anesthesia. Anesth Analg 1993; 76:868–871.

    PubMed  CAS  Google Scholar 

  27. Gregory GA, Eger EI II, Munson ES, et al. The relationship between age and halothane requirements in man. Anesthesiology 1969; 30:488–491.

    Article  PubMed  CAS  Google Scholar 

  28. Johnston RR, Eger EI II, Wilson C. Comparative interaction of epinephrine with enflurane, isoflurane, and halothane in man. Anesth Analg 1976; 55:709–712.

    Article  PubMed  CAS  Google Scholar 

  29. Eger EI, II, Gong D, Koblin DD, et al. Nephrotoxicity of sevoflurane vs desflurane anesthesia in volunteers. Anesth Analg 1997; 84:160–168.

    Article  PubMed  CAS  Google Scholar 

  30. Harvey MA. Managing agitation in critically ill patients. Am J Crit Care 1996; 5:7–16.

    PubMed  CAS  Google Scholar 

  31. Doenicke AW, Roizen MF, Rau J, et al. Reducing pain during propofol injection: the role of the solvent. Anesth Analg 1996; 82:472–474.

    Article  PubMed  CAS  Google Scholar 

  32. Tomlin SL, Jenkins A, Leib WR, et al. Stereoselective effects of etomidate optical isomers on gamma-aminobutyric acid type-A receptors and animals. Anesthesiology 1998; 88:708–717.

    Article  PubMed  CAS  Google Scholar 

  33. Abboud TK, Zhu J, Richardson M, et al. Intravenous propofol vs thiamylal-isoflurane for caesarean section, comparative maternal and neonatal effects. Acta Anaesthesiol Scand 1995; 39:205–209.

    Article  PubMed  CAS  Google Scholar 

  34. Dundee JW, Zacharias M: Etomidate. In Dundee JW (Ed): Current topics in Anesthesia Series. 1. Intravenous Anesthetic Agents. London, Arnold, 1979, p 46.

    Google Scholar 

  35. Van Hamme MJ, Ghoneim MM, Ambre JJ. Pharmacokinetics of etomidate, a new intravenous anesthetic. Anesthesiology 1978; 49:274–277.

    Article  PubMed  Google Scholar 

  36. Meuldermans WEG, Heykants JJP. The plasma protein binding and distribution of etomidate in dog, rat and human blood. Arch Int Pharmacodyn Ther 1976; 221:150–162.

    PubMed  CAS  Google Scholar 

  37. Gooding JM, Weng J, Smith RA, et al. Cardiovascular and pulmonary responses following etomidate induction of anesthesia in patients with demonstrated cardiac disease. Anesth Analg 1979; 58:40–41.

    Article  PubMed  CAS  Google Scholar 

  38. Ebert TJ, Muzi M, Berens R, et al. Sympathetic responses to induction of anesthesia in humans with propofol or etomidate. Anesthesiology 1992; 76:725–733.

    Article  PubMed  CAS  Google Scholar 

  39. Cold GE, Eskeen V, Eriksen H, et al. CBF and CMRO2 during continuous etomidate infusion supplemented with N2O and fentanyl in patients with supratentorial cerebral tumor: a dose dependent study. Acta Anesthesiol Scand 1985; 29:490–494.

    Article  CAS  Google Scholar 

  40. Ebrahim EY, DeBoer GE, Luders H, et al. Effect of etomidate on electroencephalogram of patients with epilepsy. Anesth Analg 1986; 65:1004–1006.

    Article  PubMed  CAS  Google Scholar 

  41. Ghoneim MM, Yamada T. Etomidate: a clinical and encephalographic comparison with thiopental. Anesth Analg 1977; 56:479–485.

    Article  PubMed  CAS  Google Scholar 

  42. Allolio B, Dorr H, Struttmann R, et al. Effect of a single bolus dose of etomidate upon eight major corticosteroid hormones and plasma ACTH. Clin Endocrinol (Oxf) 1985; 22:281–286.

    Article  CAS  Google Scholar 

  43. Durrani Z, Winnie AP, Zsigmond EK, et al. Ketamine for intravenous regional anesthesia. Anesth Analg 1989; 68:328–332.

    Article  PubMed  CAS  Google Scholar 

  44. Clements JA, Nimmo WS. The pharmacokinetics and analgesic effects of ketamine in man. Br J Anaesth 1981; 53:27–30.

    Article  PubMed  CAS  Google Scholar 

  45. Geisslinger G, Hering W, Thomann P, et al. Pharmacokinetics and pharmacodynamics of ketamine enantiomers in surgical patients using a stereoselective analytical method. Br J Anaesth 1993: 70:666–671.

    Article  PubMed  CAS  Google Scholar 

  46. Lundy PM, Lockwood PA, Thompson G, et al. Differential effects of ketamine isomers on neuronal and extraneuronal catecholamine uptake mechanisms. Anesthesiology 1986; 64:359–363.

    Article  PubMed  CAS  Google Scholar 

  47. Reich DL, Silvay G. Ketamine: an update on the first twenty–five years of clinical experience. Can J Anaesth 1989; 36:186–197.

    Article  PubMed  CAS  Google Scholar 

  48. Hoffman WE, Pelligrino D, Werner C, et al. Ketamine decrease plasma catecholamines and improves outcome from complete cerebral ischemia in rats. Anesthesiology 1992; 76:755–762.

    Article  PubMed  CAS  Google Scholar 

  49. White PF, Ham J, Way WL, et al. Pharmacology of ketamine isomers in surgical patients. Anesthesiology 1980; 52:231–239.

    Article  PubMed  CAS  Google Scholar 

  50. Hayashi Y, Maze M. Alpha 2-adrenoceptor agonists and anesthesia. Br J Anaesth 1993; 71:108–118.

    Article  PubMed  CAS  Google Scholar 

  51. Morrison P, Etropolski M, Bachand R. Dexmedetomidine and sedation: a dose-ranging study. (W97–028 manuscript for publication).

    Google Scholar 

  52. Venn RM, Bradshaw CJ, Spencer R, et al. Preliminary UK experience of dexmedetomidine, a novel agent for postoperative sedation in the intensive care unit. Anaesthesia 1999; 54:1136–1142.

    Article  PubMed  CAS  Google Scholar 

  53. Precedex® (dexmedetomidine HCl) package insert. Lake Forest, IL: Hospira, Inc.; 2004 Apr.

    Google Scholar 

  54. Mason KP, Zgleszewski SE. Dexmedetomidine for pediatric sedation for computed tomography imaging studies. Anesth Analg 2006; 103:57–62.

    Article  PubMed  CAS  Google Scholar 

  55. Bouaziz H, Hewitt C, Eisenach JC. Subarachnoid neostigmine potentiation of alpha 2-adrenergic agonist analgesia. Dexmedetomidine versus Clonidine. Reg Anesth 1995; 20: 121–127.

    PubMed  CAS  Google Scholar 

  56. Bloor BC, Ward DS, Belleville JP, et al. Effects of intravenous dexmedetomidine in humans. II. Hemodynamic changes. Anesthesiology 1992; 77:1134–1142.

    Article  PubMed  CAS  Google Scholar 

  57. Correa-Sales C, Rabin BC, Maze M: A hypnotic response to dexmedetomidine, an e-2 agonist, is mediated in the locus coeruleus in rats. Anesthesiology 1992; 76:948–995.

    Article  PubMed  CAS  Google Scholar 

  58. Khan Z, Ferguson C, Jones R: Alpha-2 and imidazoline receptor agonists: their pharmacology and therapeutic role. Anaesthesia 1999; 54:146–165.

    Article  PubMed  CAS  Google Scholar 

  59. Precedex product label, Abbott Laboratories Inc.

    Google Scholar 

  60. Talke PO, Caldwell JE, Richardson CA, et al. The effects of dexmedetomidine on neuromuscular blockade in human volunteers. Anesth Analg 1999; 88:633–639.

    Article  PubMed  CAS  Google Scholar 

  61. Belleville JP, Ward DS, Bloor BC, et al. Effects of intravenous dexmedetomidine in humans. I. Sedation, ventilation, and metabolic rate. Anesthesiology 1992, 77:1125–1133.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Yang, C.I., Taneja, P., Davis, P.J. (2008). Sedative Hypnotic and Anesthetic Agents: Their Effect on the Heart. In: Munoz, R., Schmitt, C.G., Roth, S.J., da Cruz, E. (eds) Handbook of Pediatric Cardiovascular Drugs. Springer, London. https://doi.org/10.1007/978-1-84628-953-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-953-8_12

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-952-1

  • Online ISBN: 978-1-84628-953-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics