Skip to main content

Nonlinear System Identification of Aeroelastic Systems: A Structure-detection Approach

  • Chapter
Identification and Control

Abstract

Identification methods for NARMAX models are applied to aeroelastic dynamics and its properties demonstrated via continuous-time simulations and experimental conditions. Identification of parametric nonlinear models involves estimating unknown parameters and detecting its underlying structure. Structure computation is concerned with selecting a subset of parameters to give a parsimonious description of the system that may afford greater insight into the functionality of the system or a simpler controller design. Structure-detection methods applicable to NARMAX modeling are applied to aeroelastic dynamics. Among other methods, a least absolute shrinkage and selection operator (LASSO) technique is investigated for computing efficient model descriptions of nonlinear systems. Simulation results from a nonlinear dynamic aircraft model demonstrate that methods developed for NARMAX structure computation provide good accuracy for selection of the exact model structure from an over-parameterized model description. Applicability of the method to more complex systems such as those encountered in aerospace applications is shown by identifying parsimonious system descriptions of the F/A-18 active aeroelastic wing (AAW) using flight-test data.

This work was prepared as part of the second author’s official duties as an employee of the U. S. Government and in accordance with 17 U.S.C. 105, is not available for copyright protection in the United States. NASA is the owner of any foreign copyright that can be asserted for the work. Copyright@2006 by NASA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Åström, K. and Wittenmark, B. (1996). Computer-Controlled Systems: Theory and Design. Prentice Hall, Englewood Cliffs NJ, 3rd edition.

    Google Scholar 

  2. Baldelli, D., Chen, P. C., Liu, D. D., Lind, R., and Brenner, M. (2004). Nonlinear aeroelastic modeling by block-oriented identification. 45th AIAA/ASME/ASCE/AHS/ Structures, Structural Dynamics & Materials Conference, pp. AIAA-2004-1938. Palm Springs, CA.

    Google Scholar 

  3. Baldelli, D., Mazzaro, M., and Sánchez Peña, R. (2001). Robust identification of lightly damped flexible structures by means of orthonormal bases. IEEE Transactions on Control Systems Technology 9(5), 696–707.

    Article  Google Scholar 

  4. Beck, J. and Arnold, K. (1977). Parameter Estimation in Engineering and Science. Wiley series in probability and mathematical statistics. John Wiley & Sons, New York.

    Google Scholar 

  5. Billings, S. and Chen, S. (1989). Extended model set, global data and threshold model identification of severely non-linear systems. International Journal of Control 50(5), 1897–1923.

    Article  MATH  MathSciNet  Google Scholar 

  6. Billings, S. and Jones, G. (1992). Orthogonal least-squares parameter estimation algorithms for non-linear stochastic systems. International Journal of Systems Science 23(7), 1019–1032.

    MATH  MathSciNet  Google Scholar 

  7. Billings, S. and Voon, W. (1983). Structure detection and model validation tests in the identification of nonlinear systems. IEE Proceedings, Part D. 130, 193–199.

    MATH  Google Scholar 

  8. Billings, S. and Voon, W. (1984). Least squares parameter estimation algorithms for non-linear systems. International Journal of Systems Science 15(6), 601–615.

    MATH  MathSciNet  Google Scholar 

  9. Billings, S. and Voon, W. (1986). Correlation based model validity tests for non-linear models. International Journal of Control 44(1), 235–244.

    Article  MATH  MathSciNet  Google Scholar 

  10. Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press, Cambridge, U.K., 1st edition.

    MATH  Google Scholar 

  11. Bunton, R. and Denegri, C. (2000). Limit cycle oscillation characteristics of fighter aircraft. AIAA Journal of Aircraft 37(5), 916–918.

    Google Scholar 

  12. Chen, P., Sarhaddi, D., and Liu, D. (1998). Limit cycle oscillation characteristics of fighter aircraft with external stores. AIAA-98, p. 1727.

    Google Scholar 

  13. Chen, S. and Billings, S. (1989). Representations of non-linear systems: the NARMAX model. International Journal of Control 49(3), 1013–1032.

    MATH  MathSciNet  Google Scholar 

  14. Chen, S., Billings, S., Cowan, C., and Grant, P. (1990). Practical identification of NARMAX models using radial basis functions. International Journal of Control 52, 1327–1350.

    Article  MATH  MathSciNet  Google Scholar 

  15. Chen, S., Donoho, D., and Saunders, M. (2001). Atomic decomposition by basis pursuit. SIAM Journal on Scientific Compututing 43(1), 129–159.

    MATH  MathSciNet  Google Scholar 

  16. Copas, J. (1983). Regression, prediction and shrinkage. Journal of the Royal Statistical Society B 45(2), 311–354.

    MATH  MathSciNet  Google Scholar 

  17. Denegri, C. (2000). Limit cycle oscillation flight test results of a fighter with external stores. AIAA Journal of Aircraft 37(5), 761–769.

    Google Scholar 

  18. Dowell, E., Edwards, J., and Strganac, T. (2003). Nonlinear aeroelasticity. AIAA Journal of Aircraft 40(1), 857–874.

    Google Scholar 

  19. Draper, N. and Smith, H. (1981). Applied Regression Analysis. JohnWiley & Sons, New York, 2nd edition.

    MATH  Google Scholar 

  20. Efron, B. (1979). Computer and the theory of statistics: Thinking the unthinkable. SIAM Review 21(4), 460–480.

    Article  MATH  MathSciNet  Google Scholar 

  21. Efroymson, M. (1960). Multiple Regression and Correlation. in Mathematical Methods for Digital Computers. John Wiley & Sons, New York, 1st edition.

    Google Scholar 

  22. Eykhoff, P. (1974). System Identification. John Wiley & Sons, New York, 1st edition.

    Google Scholar 

  23. Franklin, G., Powell, J., and Emami-Naeini, A. (2002). Feedback Control of Dynamic Systems. Addison-Wesley, New York, 4th edition.

    Google Scholar 

  24. Freund, J. (1962). Mathematical Statistics. Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1st edition.

    Google Scholar 

  25. Gawronski, W. (1996). Balanced Control of Flexible Structures. Springer-Verlag, London, 1st edition.

    MATH  Google Scholar 

  26. Goodwin, G. and Payne, R. (1977). Dynamic System Identification: Experiment Design and Data Analysis, volume 136 of Mathematics in Science and Engineering. Academic Press, New York.

    MATH  Google Scholar 

  27. Greblicki, W. and Pawlak, M. (1991). Nonparametric identification of a cascade nonlinear time series system. Signal Processing 22, 61–75.

    Article  MATH  Google Scholar 

  28. Grigoriadis, M. and Ritter, K. (1969). A parametric method for semidefinite quadratic programs. SIAM J. Control 7(4), 559–577.

    Article  MATH  MathSciNet  Google Scholar 

  29. Haber, R. and Unbehauen, H. (1990). Structure identification of nonlinear dynamic systems-a survey on input/output approaches. Automatica 26, 651–677.

    Article  MATH  MathSciNet  Google Scholar 

  30. Harris, C. and Billings, S. (1985). Self Tuning and Adaptive Control: Theory and Applications. Peter Peregrinus, London, 2nd edition.

    MATH  Google Scholar 

  31. Hurvich, C. and Tsai, C. L. (1990). The impact of model selection on inference in linear regression. The American Statistician 44, 214–217.

    Article  Google Scholar 

  32. Korenberg, M. and Hunter, I. (1990). The identification of nonlinear biological systems: Wiener kernel approaches. Annals of Biomedical Engineering 18, 629–654.

    Article  Google Scholar 

  33. Kosut, R., Lau, M., and Boyd, S. (1992). Set-membership identification of systems with parameteric and nonparametric uncertainty. IEEE Transactions on Automatic Control 37(7), 929–942.

    Article  MATH  MathSciNet  Google Scholar 

  34. Kukreja, S. (2003). A suboptimal bootstrap method for structure detection of nonlinear output-error models. Proc. 13th IFAC Symp. System Identification, volume 13, pp. 1566–1571. Rotterdam, The Netherlands.

    Google Scholar 

  35. Kukreja, S., Galiana, H., and Kearney, R. (2003). NARMAX representation and identification of ankle dynamics. IEEE-TBME 50(1), 70–81.

    Google Scholar 

  36. Kukreja, S., Galiana, H., and Kearney, R. (2004). A bootstrap method for structure detection of NARMAX models. International Journal of Control 77(2), 132–143.

    Article  MATH  MathSciNet  Google Scholar 

  37. Kvasnica, M., Grieder, P., Baotić, M., and Morari, M. (2004). Multi Parametric Toolbox (MPT). Hybrid Systems: Computation and Control, volume 2993 of Lecture Notes in Computer Science, pp. 448–462. Springer Verlag, Philadelphia.

    Google Scholar 

  38. Lee, B., Pricei, S., and Wong, Y. (1999). Nonlinear aeroelastic analysis of airfoils: bifurcation and chaos. Progress in Aerospace Sciences 35, 205–334.

    Article  Google Scholar 

  39. Leontaritis, I. and Billings, S. (1985). Input-output parametric models for non-linear systems part I: deterministic non-linear systems. International Journal of Control 41(2), 303–328.

    Article  MATH  MathSciNet  Google Scholar 

  40. Leontaritis, I. and Billings, S. (1985). Input-output parametric models for non-linear systems part II: stochastic non-linear systems. International Journal of Control 41(2), 329–344.

    Article  MATH  MathSciNet  Google Scholar 

  41. Lind, R. and Brenner, M. (1999). Robust Aeroservoelastic Stability Analysis: Flight Test Applications. Springer-Verlag, New York, 1st edition.

    Google Scholar 

  42. Lind, R., Prazenica, R., and Brenner, M. (2003). Estimating nonlinearity using volterra kernals in feedback with linear models. AIAA-03, volume 44, pp. 1406–1416. Norfolk, Virginia.

    Google Scholar 

  43. Ljung, L. (1999). System Identification: Theory for the User. Prentice Hall, Inc., Englewood Cliffs, New Jersey, 2nd edition.

    Google Scholar 

  44. Mantel, M. (1970). Why stepdown procedures in variable selection. Technometrics 12, 621–625.

    Article  Google Scholar 

  45. Masri, S. and Caughey, T. (1979). A nonparametric identification technique for nonlinear dynamic problems. Journal of Applied Mechanics 46(2), 433–447.

    MATH  Google Scholar 

  46. Mészáros, C. (1998). The BPMPD interior point solver for convex quadratic problems. Technical Report 98-8, Hungarian Academy of Science, Budapest.

    Google Scholar 

  47. Miller, A. (1996). The convergence of Efroymson’s stepwise regression algorithm. The American Statistician 50(2), 180–181.

    Article  Google Scholar 

  48. Mukhopadhyay, V. (1995). Flutter suppression control low design and testing for the acting flexible wing. AIAA Journal of Aircraft (Special Adaptive Flexible Wing Issue) 32(1), 45–51.

    Google Scholar 

  49. Mukhopadhyay, V. (2003). Historical perspective on analysis and control of aeroelastic responses. AIAA Journal of Guidance, Control, and Dynamics 26(5), 673–684.

    Article  Google Scholar 

  50. Osborne, M., Presnell, B., and Turlach, B. (2000). On the LASSO and its dual. Journal of Computational and Graphical Statistics 9(2), 319–337.

    Article  MathSciNet  Google Scholar 

  51. Ostrom, C. (1990). Time Series Analysis: Regression Techniques. Sage Publications, Newberry Park, Calif., 2nd edition.

    MATH  Google Scholar 

  52. Palanthandalam-Madapusi, H., Hoagg, J., and Berstein, D. (2004). Basis-function optimization for subspace-based nonlinear identification of systems with measured-input nonlinearities. Proc. IEEE American Control Conference, volume 5, pp. 4788–4793. Boston, Massachusetts.

    Google Scholar 

  53. Panuska, V. (1968). A stochastic approximation method for identification of linear systems using adaptive filtering. Proceedings 9th Joint Automatic Control Conference, pp. 1014–1021. IEEE, Ann Arbor, MI, USA.

    Google Scholar 

  54. Panuska, V. (1969). An adaptive recursive least squares identification algorithm. Proceedings 8th IEEE Symp. on Adaptive Processes, p. paper 6e. University Park, PA, USA.

    Google Scholar 

  55. Pearson, R. (1995). Nonlinear input/output modelling. Journal of Process Control 5(4), 197–211.

    Article  Google Scholar 

  56. Pendleton, E., Bessette, D., Field, P., Miller, G., and Griffin, K. (2000). Active aeroelastic wing flight research program: Technical program and model analytical development. AIAA J. Aircraft 37(4), 554–561.

    Google Scholar 

  57. Pottmann, M. and Pearson, R. (1998). Block-oriented NARMAX models with output multiplicities. AIChE Journal 44(1), 131–140.

    Article  Google Scholar 

  58. Seber, G. (1977). Linear Regression Analysis. John Wiley & Sons, New York, 1st edition.

    MATH  Google Scholar 

  59. Shao, J. (1993). Linear model selection by cross-validation. Journal of the American Statistical Association 88, 486–494.

    Article  MATH  MathSciNet  Google Scholar 

  60. Sjöberg, J., et al. (1995). Nonlinear black-box modeling in system identification: a unified overview. Automatica 31(12), 1691–1724.

    Article  MATH  MathSciNet  Google Scholar 

  61. Smillie, K. (1966). An Introduction to Regression and Correlation. Academic Press Inc., London, 1st edition.

    Google Scholar 

  62. Smith, R. (1995). Eigenvalue perturbation models for robust control. IEEE Automatic Control 40(6), 10631–1066.

    Google Scholar 

  63. Smith, R. S. (1995). Model validation for robust control: An experimental process control application. Automatica 31(11), 1637–1647.

    Article  MathSciNet  Google Scholar 

  64. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society B 58(1), 267–288.

    MATH  MathSciNet  Google Scholar 

  65. Unbehauen, H. (1996). Some new trends in identification and modeling of nonlinear dynamical systems. Applied Mathematics and Computation 78, 279–297.

    Article  MATH  MathSciNet  Google Scholar 

  66. Young, P. (1968). The use of linear regression and relaxed procedures for the identification of dynamic processes. Proceedings 7th IEEE Symp. on Adaptive Processes, pp. 501–505. Los Angeles, CA, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

Kukreja, S.L., Brenner, M.J. (2007). Nonlinear System Identification of Aeroelastic Systems: A Structure-detection Approach. In: Sánchez Peña, R.S., Cayuela, V.P., Casín, J.Q. (eds) Identification and Control. Springer, London. https://doi.org/10.1007/978-1-84628-899-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-899-9_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-898-2

  • Online ISBN: 978-1-84628-899-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics