Skip to main content

Machinability Evaluation of Work Materials

  • Chapter
  • 2948 Accesses

Part of the book series: Springer Series in Advanced Manufacturing ((SSAM))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arunachalam R, Mannan MA (2000) Machinability of nickel-based high temperature alloys. Machining Science and Technology 4:127–168

    Google Scholar 

  • Bech HG (1963) Untersuchung derZerspanbarkeit von Leichtmetallegierungen. Dissertation, RWTH, Aachen

    Google Scholar 

  • Boubekri N, Rodriguez J, Asfour S (2003) Development of an aggregate indicator to assess the machinability of steels. Journal of Materials Processing Technology 134:159–165

    Article  Google Scholar 

  • Davim JP, Mata F (2005) A new machinability index in turning fiber reinforced plastics. Journal of Materials Processing Technology 170:436–440

    Article  Google Scholar 

  • Davim JP, Reis P (2004) Machinability study on composite (polyetheretherketone reinforced with 30% glass fibre-PEEK GF 30) using polycrystalline diamond (PCD) and cemented carbide (K20) tools. International Journal of Advanced Manufacturing Technology 23:412–418

    Article  Google Scholar 

  • Dravid SV, Utpat LS (2001) Machinability evaluation based on the surface finish criterion. Journal of the Institution of Engineers (India), Production Engineering Division 81:47–51

    Google Scholar 

  • Edwards W, Newman JR, Snapper K, Seaver D (1982) Multiattribute Evaluation. SAGE Publications, Newbury Park, California

    Google Scholar 

  • Enache S, Strajescu E, Opran C, Minciu C, Zamfirache M (1995) Mathematical model for the establishment of the materials machinability. CIRP Annals 44:79–82

    Google Scholar 

  • Eyada OK (1992) Reliability of cutting forces in machinability evaluation. Flexible Automation and Information Management 20:937–946

    Google Scholar 

  • Hung NP, Boey FYC, Khor KA, Oh CA, Lee HF (1995) Machinability of cast and powder-formed aluminum alloys reinforced with SiC particles. Journal of Materials Processing Technology 48:291–297

    Article  Google Scholar 

  • Jin L, Sandstrom R (1994) Machinability data applied to materials selection. Materials & Design 15:339–346

    Article  Google Scholar 

  • Kato K, Tokisue H, Chiba I (1992) Effect of side cutting edge angle of tools on the turning machinability of magnesium alloy castings MC2. Journal of Japan Institute of Light Metals 42:453–458

    Google Scholar 

  • Kim KK, Kang MC, Kim JS, Jung YH, Kim NK (2002) A study on the precision machinability of ball end milling by cutting speed optimization. Journal of Materials Processing Technology 130–131:357–362

    Article  Google Scholar 

  • Konig W, Erinski D (1983) Machining and machinability of aluminum cast alloys. CIRP Annals 32:535–540

    Article  Google Scholar 

  • Liao TW (1996) A fuzzy multi criteria decision making method for material selection. Journal of Manufacturing Systems 15:1–12

    Article  Google Scholar 

  • Malakooti B, Wang J, Tandler EC (1990) Sensor-based accelerated approach for multiattribute machinability and tool life evaluation. International Journal of Production Research 28:2373–2392

    Google Scholar 

  • Manna A, Bhattacharya B (2003) A study on machinability of Al/SiC-MMC. Journal of Materials Processing Technology 140:711–716

    Article  Google Scholar 

  • Mills B, Redford AH (1983) Machinability of engineering materials. Applied Science Publishers, London

    Google Scholar 

  • Morehead M, Huang Y, Hartwig KT (2007) Machinability of ultrafine-grained copper using tungsten carbide and polycrystalline diamond tools. International Journal of Machine Tools and Manufacture 47:286–293

    Article  Google Scholar 

  • Notoya H, Yamada S, Yoshikawa K, Takatsuji Y (1990) Effects of tool materials on machinability of commercially pure titanium. Journal of the Japan Institute of Metals 54:596–602

    Google Scholar 

  • Ong SK, Chew LC (2000) Evaluating the machinability of machined parts and their setup plans. International Journal of Production Research 38:2397–2410

    Article  MATH  Google Scholar 

  • Ostafev VA, Minaev AA, Kokarovtsev VV (1989) Fast method for determining machinability of materials. Soviet Engineering Research 9:113–114

    Google Scholar 

  • Özdemir N, Özek C (2006) An investigation on machinability of nodular cast iron by WEDM. International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-004-2446-3

    Google Scholar 

  • Rao RV (2005) Machinability evaluation of work materials using a combined multiple attribute decision making method. International Journal of Advanced Manufacturing Technology 28:221–227

    Google Scholar 

  • Rao RV, Gandhi OP (2002) Digraph and matrix methods for machinability evaluation of work materials. International Journal of Machine Tools and Manufacture 42:321–330

    Article  Google Scholar 

  • Rech J, Calvez CL, Dessoly M (2004) A new approach for the characterization of machinability-application to steels for plastic injection molds. Journal of Materials Processing Technology 152:66–70

    Article  Google Scholar 

  • šalak A, Vasilko K, Selecká M, Danninger H (2006) New short time face turning method for testing the machinability of PM steels. Journal of Materials Processing Technology 176:62–69

    Article  Google Scholar 

  • Şeker U, Hasirci H (2006) Evaluation of machinability of austempered ductile irons in terms of cutting forces and surface quality. Journal of Materials Processing Technology 173:260–268

    Article  Google Scholar 

  • Shanmugam S, Krishnamurthy R (1992) Machinability study on pearlitic spheroidal graphite cast iron. International Journal of Production Research 30:189–197

    Google Scholar 

  • StoiĆ A, Kopač J, Cukor G (2005) Testing of machinability of mould steel 40CrMnMo7 using genetic algorithm. Journal of Materials Processing Technology 164–165:1624–1630

    Google Scholar 

  • Trent EM (1991) Metal cutting. Butterworth-Heinemann, London

    Google Scholar 

  • Yoshikawa T, Miyazawa S, Mori K (1994) Machinability of Ni3Al-based intermetallic compounds. Journal of Mechanical Engineering Laboratory 48:190–196

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

(2007). Machinability Evaluation of Work Materials. In: Decision Making in the Manufacturing Environment. Springer Series in Advanced Manufacturing. Springer, London. https://doi.org/10.1007/978-1-84628-819-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-819-7_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-818-0

  • Online ISBN: 978-1-84628-819-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics