Skip to main content

Derivation of Lipid in Lesion

  • Chapter
  • 404 Accesses

Abstract

Lipid has dominated research in the field of atherogenesis—so much so that it has come to be regarded as the sine qua non of atherosclerosis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stehbens WE. The lipid hypothesis and the role of haemodynamics in atherogenesis. Prog Cardiovasc Dis 1990;2:119–136.

    Article  Google Scholar 

  2. Woolf N. Lipids and connective tissue of the arterial wall. In: Crawford T (ed) Pathology of atherosclerosis. London: Butterworth, 1982:113–126.

    Google Scholar 

  3. Stachowska E, Dolegowska B, Chlubek D, et al. Dietary trans fatty acids and composition of human atheromatous plaques. Eur J Nutr 2004;43(5):313–318.

    Article  PubMed  CAS  Google Scholar 

  4. Brooks CJ, Steel G, Gilbert JD, Harland WA. Lipids of human atheroma. Part 4. Characterisation of a new group of polar sterol esters from human atherosclerotic plaques. Atherosclerosis 1971;13:223–237.

    Article  PubMed  CAS  Google Scholar 

  5. Garcia-Cruset S, Carpenter KL, Guardiola F, et al. Oxysterols in cap and core of human advanced atherosclerotic lesions. Free Radic Res 1999;30(5):41–50.

    Article  Google Scholar 

  6. Oorni K, Pentikainen MO, Ala-Korpela M, et al. Aggregation, fusion, and vesicle formation of low density lipoprotein particles: molecular mechanism and effects on matrix inter actions. J Lipid Res 2000;41:1703–1714.

    PubMed  CAS  Google Scholar 

  7. Guyton JR, Klemp KF. Development of atherosclerotic core region. Chemical and ultrastructural analysis of microdissected atherosclerotic lesions from human aorta. Arterioscler Thromb 1994;14:1305–1314.

    PubMed  CAS  Google Scholar 

  8. Reynaldo A, Carabeo RA, Mead DJ, et al. Golgi-dependant transport of cholesterol to the Chlamydia trachomatis inclusion. Proc Natl Acad Sci USA 2003;100(11):6771–6776.

    Article  Google Scholar 

  9. Wolf K, Hackstadt T. Shingomyelin trafficking in Chlamydia pneumoniae infected cells. Cell Microbiol 2001;3(3):145–152.

    Article  PubMed  CAS  Google Scholar 

  10. Hackstadt T, Scidmore MA, Rockey DD. Lipid metabolism of Chlamydia trachomatis-infected cells:trafficking of Golgi derived sphingolipids to the chlamydial inclusion. Proc Natl Acad Sci U S A 1995;92(11):4877–4881.

    Article  PubMed  CAS  Google Scholar 

  11. Wylie JL, Hatch GM, McClarty G. Host’s phospholipids are trafficked and then modified by Chlamydia trachomatis. J Bacteriol 1997;179(23):7233–7242.

    PubMed  CAS  Google Scholar 

  12. Hatch GM, McClarty G. Phospholipid composition of purified Chlamydia trachomatis mimics that of eukaryotic host cell. Infect Immun 1998;366(8):3727–3735.

    Google Scholar 

  13. Jenkin HM, Makino S, Townsend D, et al. Lipid composition of the hemagglutinating active fraction obtained from chick embryos infected with Chlamydia psittaci. Infect Immun 1970;2:316–319.

    PubMed  CAS  Google Scholar 

  14. Nurminen M, Rietschel ET, Braude H. Chemical composition of Chlamydia trachomatis lipopolysaccharide. Infect Immun 1985;48(2):573–575.

    PubMed  CAS  Google Scholar 

  15. Hussein A, Patoprsty V, Toman R. Chlamydia psittaci lipopolysaccharide. a reinvestigation of its chemical composition and structure. Acta Virol 1999;43(6):381–386.

    PubMed  CAS  Google Scholar 

  16. Yamada S, Kumazawa S, Ishii T, et al. Immunochemical detection of a lipofuscin-like fluorophore from malondialdehyde and lysine. Lipid Res 2001;42(8):1187–1196.

    CAS  Google Scholar 

  17. Hoppe G, Ravandi A, Herrera D, et al. Oxidation products of cholesterol linoleate are resistant to hydrolysis in macrophages, form complexes with proteins and are present in human atherosclerotic lesions. Lipid Res 1997;38(7):1347–1360.

    CAS  Google Scholar 

  18. Jarros W, Ecky R, Menschikowski M. Biological effects of secretory phospholipase A2 group 11a of lipoproteins in atherogenesis. Eur J Invest 2002;32(6):383–393.

    Article  Google Scholar 

  19. Azenabor AA, Job G, Yang S. Induction of lipoprotein lipase gene expression in Chlamydia pneumoniae-infected macrophages is dependent on Ca2+ signal events. Biol Chem 2004;385(1):67–74.

    Article  PubMed  CAS  Google Scholar 

  20. Miya N, Oguchi S, Watanabe I, et al. Relation of secretory phopholipase A(2) and high sensitivity to C-reactive protein to Chlamydia pneumoniae infections in acute coronary syndromes. Circ J 2004;68(7):628–633.

    Article  PubMed  CAS  Google Scholar 

  21. Zhang JP, Stephens RS. Mechanism of C. trachomatis attachment to eukaryotic host cells. Cell 1992;69:861–869.

    Article  PubMed  CAS  Google Scholar 

  22. Wupperman N, Hegeman JH, Jantos CA. Heparan-sulphate-like glycosaminoglycan is a cellular receptor for Chlamydia pneumoniae. J Infect Dis 2001;184:181–187.

    Article  Google Scholar 

  23. Jutras I, Abrami L, Dautry-Varsat A. Entry of the lymphogranuloma venereum strain of Chlamydia trachomatis into host cell involves cholesterol-rich membrane domains. Infect Immun 2003;71(1):260–266.

    Article  PubMed  CAS  Google Scholar 

  24. Hu H, Pierce GN, Zhong G. The atherogenic effects of Chlamydia are dependent on serum cholesterol and are specific to Chlamydia pneumoniae. J Clin Invest 1999;103:747–753.

    Article  PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

(2007). Derivation of Lipid in Lesion. In: Chlamydia Atherosclerosis Lesion. Springer, London. https://doi.org/10.1007/978-1-84628-810-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-810-4_18

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-809-8

  • Online ISBN: 978-1-84628-810-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics