Skip to main content

Confirmatory Molecular Biological Studies

  • Chapter
Book cover Chlamydia Atherosclerosis Lesion
  • 398 Accesses

Abstract

There are molecular biological studies confirming that Chlamydia pneumoniae plays some role in the lesion. Studies are unraveling various mechanisms in which Chlamydia pneumoniae plays a role in the inflammatory processes, lymphocytic infiltrate, muscle damage, macrophage infiltrate, and other aspects that make up part and parcel of the atheroma lesion [1]–[32].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rupp J, Hellwig-Burgel T, Wolbe V, et al. Chlamydia pneumoniae infection promotes a proliferative phenotype in the vasculature through Erg-1 activation in vitro and in vivo. Proc Natl Acad Sci U S A 2005;102(9):3447–3452.

    Article  PubMed  CAS  Google Scholar 

  2. Kol A, Bourcier T, Lichtman AH, et al. Chlamydia and human heat shock protein 60 activate vascular endothelium, smooth muscle cells and macrophages. J Clin Invest 1999;103:571–577.

    Article  PubMed  CAS  Google Scholar 

  3. Kol A, Lichtman AH, Finberg RW, et al. Cutting edge: heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells. J Immun 2000;164:13–17.

    PubMed  CAS  Google Scholar 

  4. Mayr M, Metzler B, Kiechl S, et al. Endothelial cytotoxicity mediated by serum antibodies to heat shock protein of Escherichia coli and Chlamydia pneumoniae. Immune reactions to heat shock protein as a possible link between infection and atherosclerosis. Circulation 1999;99:1560–1599.

    PubMed  CAS  Google Scholar 

  5. Jonasson I, Holm I, Skalli O, et al. Regional accumulation of T-cells, macrophages, and smooth muscle cells in the human atherosclerosis plaque. Atherosclerosis 1986;6:131–138.

    CAS  Google Scholar 

  6. Melian A, Geng Y-J, Sukhova GK, et al. CD 1 expression in human atherosclerosis. A potential mechanism for T cell activation by foam cells. Am J Pathol 1999;155(3):775–786.

    PubMed  CAS  Google Scholar 

  7. Ausiello CM, Palazzo R, Spensieri F, et al. 60-kDa heat shock protein of Chlamydia pneumoniae is a target of T-cell immune response. J Biol Regul Homeost Agents 2005;19(3–4):136–140.

    PubMed  CAS  Google Scholar 

  8. Curry AJ, Portig I, Goodall JC, et al. T lymphocyte line isolated from atheromatous plaque contain cells capable of responding to Chlamydia antigens. Clin Exp Immunol 2000;121:261–269.

    Article  PubMed  CAS  Google Scholar 

  9. Nadareishvili ZG, Koziol DE, Szekely B, et al. Increased CD8 T cells associated with Chlamydia pneumoniae in symptomatic carotid plaques. Stroke 2001;32(9):1966–1972.

    Article  PubMed  CAS  Google Scholar 

  10. Mosorin M, Surcel H-M, Laurila A, et al. Detection of Chlamydia pneumoniae-reactive T lymphocytes in human atherosclerotic plaques of carotid artery. Arterioscler Thromb Vasc Biol 2000;20:1061–1067.

    PubMed  CAS  Google Scholar 

  11. de Boer OJ, van der Wal AC, Houtcamp MA, et al. Unstable atherosclerotic plaques contain T-cells that respond to Chlamydia pneumoniae. Cardiovasc Res 2000;48:402–408.

    Article  PubMed  Google Scholar 

  12. Knoebel E, Vijayagopal P, Figuerora JE, et al. In vitro infection of smooth muscle cells by Chlamydia pneumoniae. Infect Immun 1997;65(2):503–506.

    PubMed  CAS  Google Scholar 

  13. Sakash JB, Byrne GI, Lichtman A, et al. Cytokines induce indolamine 2–3 dioxygenase expression in human atheroma-associated cell: implications for persistent Chamydophila pneumoniae infection. Infect Immun 2002;70:3959–3961.

    Article  PubMed  CAS  Google Scholar 

  14. Dumrese C, Maurus CF, Gygi D, et al. Chlamydia pneumoniae induces aponecrosis in human aortic smooth muscle cells. BMC Microbiol 2005;5(1):2.

    Article  PubMed  CAS  Google Scholar 

  15. Nazzal D, Cantero AV, Therville N, et al. Chlamydia pneumoniae alters mildly oxidised low density lipoprotein-induced cell death in human endothelial cells leading to necrosis rather than apoptosis. J Infect Dis 2006;193(1):136–145.

    Article  PubMed  CAS  Google Scholar 

  16. Miller SA, Selzman CH, Shames BD, et al. Chlamydia pneumoniae activates nuclear factor kappa B and activator protein 1 in human vascular smooth muscle cells and cell proliferation. J Surg Res 2000;90(1):76–81.

    Article  PubMed  CAS  Google Scholar 

  17. Yamaguchi H, Haranaga S, Widen R, et al. Chlamydia pneumoniae induces differentiation of monocytes into macrophages. Infect Immun 2002;70;2392–2398.

    Article  PubMed  CAS  Google Scholar 

  18. Kalayoglu MV, Bryne GI. Induction of macrophage foam cell formation by Chlamydia pneumoniae. J Infect Dis 1998;177:725–729.

    Article  PubMed  CAS  Google Scholar 

  19. Kuroda S, Kobayashi T, Ishii N, et al. Role of Chlamydia pneumoniae-infected macrophages in atherosclerosis development of the carotid artery. Neuropathology 2003;23(1):1–8.

    Article  PubMed  Google Scholar 

  20. Virok D, Loboda A, Kari L, et al. Infection of U937 monocyte cells with Chlamydia pneumoniae induces extensive changes in host cell gene expression. J Infect Dis 2003;188(9):1310–1321.

    Article  PubMed  CAS  Google Scholar 

  21. Kalayoglu MV, Bryne GI. A Chlamydia pneumoniae component that induces macrophage foam cell formation is Chlamydia lipopolysaccharide. Infect Immun 1998;66(11):5067–5072.

    PubMed  CAS  Google Scholar 

  22. Coombs BK, Chiu B, Fong IW, et al. Chlamydia pneumoniae infection of endothelial cells induces transcription of platelet-derived growth factor. Potential link to intimal thickening in a rabbit model of atherosclerosis. J Infect Dis 2002;85(11):1621–1630.

    Article  Google Scholar 

  23. Coombes BK, Mahony JB. Chlamydia pneumoniae infection of human endothelial cells induces proliferation of smooth muscle cells via an endothelial cell derived soluble factor. Infect Immun 1999;67(6):2909–2915.

    PubMed  CAS  Google Scholar 

  24. Krull M, Klucken AC, Wupperman FN, et al. Signal transduction pathways activated in endothelial cells following infection with Chlamydia pneumoniae. J Immunol 1999;162(8):4834–4841.

    PubMed  CAS  Google Scholar 

  25. Vilma SA, Krings G, Lopes-Virella MF. Chlamydia pneumoniae induces ICAM-1 expression in human aortic and endothelial cells via protein kinase C-dependent activation. Circ Res 2003;92(10):1130–1137.

    Article  CAS  Google Scholar 

  26. Molestina RE, Millar RD, Ramirez JA, et al. Infection of human endothelial cells with Chlamydia pneumoniae stimulates trans-endothelial migration of neutrophils and monocytes. Infect Immun 1999;67(3):1323–1330.

    PubMed  CAS  Google Scholar 

  27. Niesser A, Kaun C, Zorn G, et al. Polymorphic membrane protein (PMP) 20 and 8PMP 21 of Chlamydia pneumoniae induce proinflammatory mediator in human endothelial cells in vitro by activation of the nuclear factor-kappa B pathway. J Infect Dis 2003;188(1):108–113.

    Article  Google Scholar 

  28. Rodel J, Prochnau D, Prager K, et al. Increased production of matrix metalloproteinases 1 and 3 in smooth muscle cells upon infection with Chlamydia pneumoniae. FEMS Immunol Med Microbiol 2003;38(2):159–164.

    Article  PubMed  CAS  Google Scholar 

  29. Choi EY, Kim D, Hong BK, et al. Upregulation of extracellular metalloproteinase inducer (EMMPRIM) and gelatinase in human atherosclerosis infected with Chlamydia pneumoniae. The potential role of Chlamydia pneumoniae in the progression of atherosclerosis. Exp Mol Med 2002;34(6):391–400.

    PubMed  CAS  Google Scholar 

  30. Kim MP, Gaydos CA, Wood BJ, et al. Chlamydia pneumoniae enhances cytokine-stimulated human monocyte matrix metalloproteinases through prostaglandin E2-dependent mechanism. Infect Immun 2005;73(1):632–634.

    Article  PubMed  CAS  Google Scholar 

  31. Rodel J, Woytas M, Groh A, et al. Production of basic fibroblast growth factor and interleukin 6 by human smooth muscle cells following infection with Chlamydia pneumoniae. Infect Immun 2000;68(6):3635–3641.

    Article  PubMed  CAS  Google Scholar 

  32. Lijnen HR. Extracellular proteolysis in the development and progression of atherosclerosis. Biochem Soc Trans 2002;30(2):163–167.

    Article  PubMed  CAS  Google Scholar 

  33. Petersen E, Boman J, Wagberg F, et al. In vitro degradation of aortic elastin by Chlamydia pneumoniae. Eur J Endovasc Surg 2001;22(5):443–447.

    Article  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

(2007). Confirmatory Molecular Biological Studies. In: Chlamydia Atherosclerosis Lesion. Springer, London. https://doi.org/10.1007/978-1-84628-810-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-810-4_17

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-809-8

  • Online ISBN: 978-1-84628-810-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics