Skip to main content

Mining Knowledge in Computer Tomography Image Databases

  • Chapter
Multimedia Data Mining and Knowledge Discovery
  • 987 Accesses

Abstract

This chapter presents our research results obtained for texture extraction, classification, segmentation, and retrieval of normal soft tissues in Computed Tomography (CT) studies of the chest and abdomen. The texture extraction step consists of various texture methods applied to the collection of tissue data in order to derive a set of features characterizing the best the visual perception of texture. The classification step involves different data mining learning models used to automatically map similar texture features to the same type of tissues, and produce a set of rules that can be used for automatic classification and annotation of unlabelled image data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hendee WR, Ritonour ER. Medical Imaging Physics. Elsevier Academic Press, 2004.

    Google Scholar 

  2. Dreyer KJ. The alchemy of data mining. Imaging Economics, 2005

    Google Scholar 

  3. Xu D, Lee J, Raicu DS, Furst JD, Channin DS. Texture classification of normal tissues in computed tomography. In: The 2005 Annual Meeting of the Society for Computer Applications in Radiology, 2005.

    Google Scholar 

  4. Kalinin M, Raicu DS, Furst JD, Channin DS. A classification approach for anatomical regions segmentation. In: The IEEE International Conference on Image Processing (ICIP), 2005.

    Google Scholar 

  5. Corboy A, Tsang W, Raicu DS, Furst J. Texture-based image retrieval for computerized tomography databases. In: The 18th IEEE International Symposium on Computer-Based Medical Systems(CBMS'05), 2005.

    Google Scholar 

  6. Karkanis SA, Magoulas GD, Grigoriadou M, Schurr M. Detecting abnormalities in colonoscopic images by textural descriptors and neural networks. In: Proceedings of theWorkshop Machine Learning in Medical Applications, 1999;59–62.

    Google Scholar 

  7. Chabat F, Yang GZ, Hansell DM. Obstructive Lung Diseases: Texture Classification for Differentiation at CT, RSNA 2003.

    Google Scholar 

  8. Sluimer IC, van Waes PF, Viergever MA, van Ginneken B. Computer-aided diagnosis in high resolution CT of the lungs. Medical Physics, 2003;30(12).

    Google Scholar 

  9. Fortson R, Lynch D, Newell J. Automated segmentation of scleroderma in HR CT imagery. Report LA-UR-95-2401, 1995.

    Google Scholar 

  10. Cios KJ, Goodenday LS, Shah KK, Serpen G. Novel algorithm for classification of SPECT images of a human heart. IEEE Content-Based Medical Systems, 1996.

    Google Scholar 

  11. Albrecht A, Loomes MJ, Steinhöfel K, Taupitz M. Adaptive simulated annealing for CT image classification. In: Proceedings of IJPRAI, 2002;16(5).

    Google Scholar 

  12. Wolf M, Ziegengeist S, Michalik M, Bornholdt F, Michalik S, Meffert B. Classification of brain tumors by CT-image Walsh spectra. Neuroradiology, 1990;32(6).

    Google Scholar 

  13. Jain AK, Farrokhia F. Unsupervised texture segmentation using Gabor filters. Pattern Recognition, 1991;24:1167–1186.

    Article  Google Scholar 

  14. Chang T, Kuo CC. Texture segmentation with tree-structured wavelet transform. In: Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, 1992;543–546.

    Google Scholar 

  15. Unser M. Texture classifification and segmentation using wavelet frames. IEEE Trans. on Im. Proc., 1995;4(11):1549–1560.

    Article  MathSciNet  Google Scholar 

  16. Chang KI, Bowyer KW, Sivagurunath M. Evaluation of texture segmentation algorithms. IEEE Conference on Computer Vision and Pattern Recognition, 1999;294–299.

    Google Scholar 

  17. Porter R, Canagarajah N. A robust automatic clustering scheme for image segmentation using wavelets. IEEE Transactions on Image Processing, 1996;5(4):662–665.

    Article  Google Scholar 

  18. Beveridge JR, Gri J, Kohler RR, Hanson AR, Riseman EM. Segmenting images using localized histograms and region merging. International Journal Computer Vision, 1989;2:311–347.

    Article  Google Scholar 

  19. Adams R, Bischof L. Seeded region growing. IEEE Transactions Pattern Analysis and Machine Intelligence, 1994;16(6):641–647.

    Article  Google Scholar 

  20. Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models. International Journal of Computer Vision, 1988;1:321–331.

    Article  Google Scholar 

  21. Tagare DH, Jaffe CC, Duncan J. Medical image databases: A content-based retrieval approach. Journal of American Medical Informatics Association, 1997;4(3):184–198.

    Google Scholar 

  22. Baker JA, Kornguth PJ, Soo MS, Walsh R, Mengoni P. Sonography of solid breast lesions: Observer variability of lesion description and assessment. AJR 1999;172:1621–1625.

    Google Scholar 

  23. Müller H, Rosset A, Vallée JP, Geissbuhler A. Comparing feature sets for content-based medical information retrieval. SPIE Medical Imaging, 2004.

    Google Scholar 

  24. Orphanoudakis SC, Chronaki CE, Kostomanolakis S. I2Cnet: A system for the indexing, storage and retrieval of medical images by content. Medical Informatics, 1994;4(3):109–122.

    Article  Google Scholar 

  25. El-Kwae EA, Xu H, Kabuka MR. Content-based retrieval in picture archiving and communication systems. Journal of Digital Imaging, 2000;13(2):70–81.

    Article  Google Scholar 

  26. Guld MO, Wein BB, Keysers D, Thies C, Kohnen M, Schubert H, Lehmann TM. A distributed architecture for content-based image retrieval in medical applications. In: Proceedings of the International Conference on Enterprise Information Systems (ICEIS2001), 2001;299–314.

    Google Scholar 

  27. Lehmann T, Wein B, Dahmen J, Bredno J, Vogelsang F, Kohnen M. Content-based image retrieval in medical applications: A novel multi-step approach. In: Procs. Int. Society for Optical Engineering (SPIE), 2000;3972(32):312–331.

    Google Scholar 

  28. Chu WW, Cardenas AF, Taira RK. KMED: A knowledge-based multimedia distributed database system. Information Systems, 1994;19(4):33–54.

    Google Scholar 

  29. Müller H, Fabry P, Geissbuhler A. MedGIFT-Retrieving medical images by there visual content. World Summit of the Information Society, Forum Science and Society, 2003.

    Google Scholar 

  30. Image Engine: http://www.bristol.ac.uk/radiology/IntLink/ImageEngine.html

    Google Scholar 

  31. Glatard T, Montagnat J, Magnin IE. Texture based medical image indexing and retrieval: application to cardiac imaging. ACM SIGMM international workshop on Multimedia Information Retrieval (MIR'04). In: Proceedings of ACM Multimedia 2004.

    Google Scholar 

  32. RubnerY, Tomasi C.Texture metrics. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, 1998;4601–4607.

    Google Scholar 

  33. Brodley C, Kak A, Shyu C, Dy J, Broderick L, Aisen AM. Content-based retrieval from medical image databases: A synergy of human interaction, machine learning and computer vision. In: Proc. of the Sixteenth National Conference on Artificial Intelligence (AAAI'99), 1999.

    Google Scholar 

  34. Zheng L, WetzelAW, Gilbertson J, Becich MJ. Design and analysis of content-based pathology image retrieval system. IEEE Transactions on Information Technology in Biomedicine, 2003;7(4).

    Google Scholar 

  35. Wei CH, Li CT, Wilson R. A general framework for content-based medical image retrieval with its application to mammograms. In: Proc. SPIE Int'l Symposium on Medical Imaging, 2005.

    Google Scholar 

  36. Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, 1973;Smc-3(6):610–621.

    Google Scholar 

  37. Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models. International Journal of Computer Vision, 1988;1(4).

    Google Scholar 

  38. Tourassi GD. Journey toward computer-aided diagnosis role of image texture analysis. Radiology, 1999;213:317–320.

    Google Scholar 

  39. Raicu DS, Furst JD, Channin DS, Xu DH, Kurani A. A texture dictionary for human organs tissues' classification. In: Proc. of the 8th World Multiconf. on Syst., Cyber. and Inform., 2004.

    Google Scholar 

  40. Bentley JL. Multidimensional binary search trees used for associative searching. Communications of the ACM, 1975;18:509–517.

    Article  MATH  Google Scholar 

  41. Rubner Y, Puzicha J, Tomasi C, Buhmann JM. Empirical evaluation of dissimilarity measures for color and texture. International Conference on Computer Vision, 1999;2:1165.

    Google Scholar 

  42. Pluim JPW, Maintz JBA, Viergever MA. Mutual-information-based registration of medical images: A survey. IEEE Transactions on Medical Imaging, 2003;22(8):986–1004

    Article  Google Scholar 

  43. Rubner Y, Tomasi C, Guibas L. The Earth Mover's Distance as a metric for image retrieval. Technical Report STAN-CS-TN-98–86, Computer Science Department, Stanford University, 1998.

    Google Scholar 

  44. Wei G, Li D, Sethi IK. Detection of side-view faces in color images. In: Proceedings of Fifth IEEE Workshop on Applications of Computer Vision, 2000; pp. 79–84.

    Google Scholar 

  45. Koss JE, Newman FD, Johnson TK, Kirch DL. Abdominal organ segmentation using texture transforms and a Hopfield neural network. IEEE Transactions on Medical Imaging, 1999;18.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Raicu, D.S. (2007). Mining Knowledge in Computer Tomography Image Databases. In: Petrushin, V.A., Khan, L. (eds) Multimedia Data Mining and Knowledge Discovery. Springer, London. https://doi.org/10.1007/978-1-84628-799-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-799-2_25

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-436-6

  • Online ISBN: 978-1-84628-799-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics