Skip to main content

Mining Image Content by Aligning Entropies with an Exemplar

  • Chapter
Multimedia Data Mining and Knowledge Discovery
  • 985 Accesses

Abstract

To efficiently answer queries on image databases at run time, content must be mined from the images offline. We describe a technique for locating objects in the library for which we have an exemplar to compare against.We match the images against the exemplar by comparing the local entropies in the images at corresponding positions. This representation is invariant to many imaging phenomena that can cause appearance-based techniques to fail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Veltkamp RC, Tanase M. Content-based image retrieval systems: A survey. http://www.aalab.cs.uu.nl/cbirsurvey/index.html, revised from technical report UU-CS-2000–34, Dept. of Computing Science, 2001.

    Google Scholar 

  2. Turk MA, Pentland AP. Face recognition using eigenfaces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 1991;586–91.

    Google Scholar 

  3. Murase H, Nayar SK. Visual learning and recognition of 3-d objects from appearance. International Journal of Computer Vision 1995;14:5–24.

    Article  Google Scholar 

  4. Olson CF. Image registration by aligning entropies. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2001;2:331–6.

    Google Scholar 

  5. Olson CF. Maximum-likelihood image matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 2002;24(6):853–7.

    Article  MathSciNet  Google Scholar 

  6. Olson CF. Image mining by matching exemplars using entropy. In: Proceedings of the Fourth International Workshop on Multimedia Data Mining 2003;87–92.

    Google Scholar 

  7. Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P. Multimodality image registration by maximization of mutual information. IEEE Transactions on Medical Imaging 1997;16(2):187–98.

    Article  Google Scholar 

  8. Viola P, Wells WM. Alignment by maximization of mutual information. International Journal of Computer Vision 1997;24(2):137–54.

    Article  Google Scholar 

  9. Brown LMG, Boult TE. Registration of planar film radiographs with computed tomography. In: Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis 1996;42–51.

    Google Scholar 

  10. Flickner M, Sawhney H, NiblackW, Ashley J, Huang Q, Dom B, et al. The QBIC system. IEEE Computer 1995;28(9):23–32.

    Google Scholar 

  11. Pentland A, Picard RW, Sclaroff S. Photobook: Content-based manipulation of image databases. International Journal of Computer Vision 1996;18(3):233–54.

    Article  Google Scholar 

  12. Bach JR, Fuller C, Gupta A, Hampapur A, Horowitz B, Humphry R, et al. Virage image search engine: An open framework for image management. In: Storage and Retrieval for Image and Video Databases, Proc. SPIE 1996;2670: 76–87.

    Google Scholar 

  13. Ma WY, Manjunath BS. NeTra: A toolbox for navigating large image databases. Multimedia Systems 1999;7(3):184–98.

    Article  Google Scholar 

  14. Cox IJ, Miller ML, Minka TP, Papathomas TV, Yianilos PN. The Bayesian image retrieval system, PicHunter: Theory, implementation and psychophysical experiments. IEEE Transactions on Image Processing 2000;9(1):20–37.

    Article  Google Scholar 

  15. Gevers T, Smeulders AWM. PicToSeek: Combining color and shape invariant features for image retrieval. IEEE Transactions on Image Processing 2000;9(1):102–19.

    Article  Google Scholar 

  16. Carson C, Belongie S, Greenspan B, Malik J. Blobworld: Image segmentation using expectation-maximization and its application to image querying. IEEE Transactions on Pattern Analysis and Machine Intelligence 2002;24(8):1026–38.

    Article  Google Scholar 

  17. Swain MJ, Ballard DH. Color indexing. International Journal of Computer Vision 1991;7(1):11–32.

    Article  Google Scholar 

  18. Pass G, Zabih R. Comparing images using joint histograms. Journal of Multimedia Systems 1999;7(3):234–40.

    Article  Google Scholar 

  19. Huang J, Kuma SR, Mitra M, Zhu WJ, Zabih R. Spatial color indexing and applications. International Journal of Computer Vision 1999;35(3):245–68.

    Article  Google Scholar 

  20. Lowe DG. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 2004;60(2):91–110.

    Article  Google Scholar 

  21. Schmid C, Mohr R. Local grayvalue invariants for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence 1997;19(5):530–34.

    Article  Google Scholar 

  22. Press WH, Teukolsky SA, Vetterling WT, Plannery BP. Numerical Recipes inC. Cambridge University Press, 1988.

    Google Scholar 

  23. Rucklidge WJ. Efficient guaranteed search for gray-level patterns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 1997;717–23.

    Google Scholar 

  24. Chang SF, Chen W, Meng HJ, Sundaram H, Zhong D. VideoQ: An automated content based video search system using visual cues. In: Proceedings of the ACM Multimedia Conference 1997;313–24.

    Google Scholar 

  25. Liu CC, Chen ALP. 3d-List: A data structure for efficient video query processing. IEEE Transactions on Knowledge and Data Engineering 2002;14(1):106–22.

    Article  Google Scholar 

  26. Breuel TM. Fast recognition using adaptive subdivisions of transformation space. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 1992;445- 51.

    Google Scholar 

  27. Huttenlocher DP, Rucklidge WJ. A multi-resolution technique for comparing images using the Hausdorff distance. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 1993;705–6.

    Google Scholar 

  28. Olson CF.Aprobabilistic formulation for Hausdorff matching. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 1998;150–6.

    Google Scholar 

  29. Rahimi A, Morency LP, Darrell T. Reducing drift in parametric motion tracking. In: Proceedings of the International Conference on Computer Vision 2001;1:315–22.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Olson, C.F. (2007). Mining Image Content by Aligning Entropies with an Exemplar. In: Petrushin, V.A., Khan, L. (eds) Multimedia Data Mining and Knowledge Discovery. Springer, London. https://doi.org/10.1007/978-1-84628-799-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-799-2_16

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-436-6

  • Online ISBN: 978-1-84628-799-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics