Skip to main content

Mechanical Devices to Improve Circulation During Cardiopulmonary Resuscitation

  • Chapter
Acute Heart Failure

Abstract

Even with the widespread practice of basic and advanced life support, the vast majority of patients in cardiac arrest never survive to hospital discharge. Each year over one million Europeans and Americans die from sudden cardiac arrest. The waste of human potential is enormous. Contrary to popular opinion, many of the victims die in their prime. Survival rates for out-of-hospital cardiac arrest vary geographically from 1% to 18%, while the in-hospital cardiac arrest survival rates vary from 5% to 25%. Differences in outcomes between geographic regions are due to many factors, but the intrinsic mechanical inefficiencies of standard cardiopulmonary resuscitation (sCPR) limit the potential of even the most highly skilled rescuers. Since the description of sCPR by Kouwenhoven and colleagues in 1960, several new cardiopulmonary resuscitation (CPR) techniques and a number of different CPR adjunctive devices have been described. These new approaches were developed based on insights into the mechanisms of blood flow during CPR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Emergency Cardiovascular Care. Circulation. Dec 13 2005;112(24 suppl):IV1–203.

    Google Scholar 

  2. Wik L. Automatic and manual mechanical external chest compression devices for cardiopulmonary resuscitation. Resuscitation. Sep 2000;47(1):7–25.

    Article  CAS  PubMed  Google Scholar 

  3. Niemann JT. Cardiopulmonary resuscitation. N Engl J Med. Oct 8 1992;327(15):1075–80.

    Article  CAS  PubMed  Google Scholar 

  4. Guidelines 2000 for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Part 2: ethical aspects of CPR and ECC. Circulation. Aug 22 2000;102(8 suppl):I12–21.

    Google Scholar 

  5. Aufderheide TP, Pirrallo RG, Yannopoulos D, et al. Incomplete chest wall decompression: a clinical evaluation of CPR performance by EMS personnel and assessment of alternative manual chest compression-decompression techniques. Resuscitation. Mar 2005;64(3):353–62.

    Article  PubMed  Google Scholar 

  6. Yannopoulos D, McKnite S, Aufderheide TP, et al. Effects of incomplete chest wall decompression during cardiopulmonary resuscitation on coronary and cerebral perfusion pressures in a porcine model of cardiac arrest. Resuscitation. Mar 2005;64(3):363–72.

    Article  PubMed  Google Scholar 

  7. Lurie KG, Lindo C, Chin J. CPR: the P stands for plumber’s helper. JAMA. Oct 3 1990;264(13):1661.

    Article  CAS  PubMed  Google Scholar 

  8. Lurie KG, Shultz JJ, Callaham ML, et al. Evaluation of active compression-decompression CPR in victims of out-of-hospital cardiac arrest. JAMA. May 11 1994;271(18):1405–11.

    Article  CAS  PubMed  Google Scholar 

  9. Plaisance P, Lurie KG, Vicaut E, et al. A comparison of standard cardiopulmonary resuscitation and active compression-decompression resuscitation for out-of-hospital cardiac arrest. French Active Compression-Decompression Cardiopulmonary Resuscitation Study Group. N Engl J Med. Aug 19 1999;341(8):569–75.

    Article  CAS  PubMed  Google Scholar 

  10. Mauer DK, Nolan J, Plaisance P, et al. Effect of active compression-decompression resuscitation (ACD-CPR) on survival: a combined analysis using individual patient data. Resuscitation. Aug 1999;41(3):249–56.

    Article  CAS  PubMed  Google Scholar 

  11. Stiell IG, Hebert PC, Wells GA, et al. The Ontario trial of active compression-decompression cardiopulmonary resuscitation for in-hospital and prehospital cardiac arrest. JAMA. May 8 1996;275(18):1417–23.

    Article  CAS  PubMed  Google Scholar 

  12. Steen S, Sjoberg T, Olsson P, et al. Treatment of out-of-hospital cardiac arrest with LUCAS, a new device for automatic mechanical compression and active decompression resuscitation. Resuscitation. Oct 2005;67(1):25–30.

    Article  PubMed  Google Scholar 

  13. Lurie KG, Mulligan KA, McKnite S, et al. Optimizing standard cardiopulmonary resuscitation with an inspiratory impedance threshold valve. Chest. Apr 1998;113(4):1084–90.

    Article  CAS  PubMed  Google Scholar 

  14. Aufderheide TP, Pirrallo RG, Provo TA, et al. Clinical evaluation of an inspiratory impedance threshold device during standard cardiopulmonary resuscitation in patients with out-of-hospital cardiac arrest. Crit Care Med. Apr 2005;33(4):734–40.

    Article  PubMed  Google Scholar 

  15. Pirrallo RG, Aufderheide TP, Provo TA, et al. Effect of an inspiratory impedance threshold device on hemodynamics during conventional manual cardiopulmonary resuscitation. Resuscitation. Jul 2005;66(1):13–20.

    Article  PubMed  Google Scholar 

  16. Plaisance P, Lurie KG, Payen D. Inspiratory impedance during active compression-decompression cardiopulmonary resuscitation: a randomized evaluation in patients in cardiac arrest. Circulation. Mar 7 2000;101(9):989–94.

    CAS  PubMed  Google Scholar 

  17. Plaisance P, Lurie KG, Vicaut E, et al. Evaluation of an impedance threshold device in patients receiving active compression-decompression cardiopulmonary resuscitation for out of hospital cardiac arrest. Resuscitation. Jun 2004;61(3):265–71.

    Article  PubMed  Google Scholar 

  18. Wolcke BB, Mauer DK, Schoefmann MF, et al. Comparison of standard cardiopulmonary resuscitation versus the combination of active compression-decompression cardiopulmonary resuscitation and an inspiratory impedance threshold device for out-of-hospital cardiac arrest. Circulation. Nov 4 2003;108(18):2201–5.

    Article  PubMed  Google Scholar 

  19. Yannopoulos D, Nadkarni VM, McKnite SH, et al. Intrathoracic pressure regulator during continuous-chest-compression advanced cardiac resuscitation improves vital organ perfusion pressures in a porcine model of cardiac arrest. Circulation. Aug 9 2005;112(6):803–11.

    Article  PubMed  Google Scholar 

  20. Yannopoulos D, Aufderheide TP, McKnite S, et al. Hemodynamic and respiratory effects of negative tracheal pressure during CPR in pigs. Resuscitation. Jun 2006;69(3):487–94.

    Article  PubMed  Google Scholar 

  21. Babbs CF. Interposed abdominal compression CPR: a comprehensive evidence based review. Resuscitation. Oct 2003;59(1):71–82.

    Article  PubMed  Google Scholar 

  22. Sack JB, Kesselbrenner MB, Bregman D. Survival from in-hospital cardiac arrest with interposed abdominal counterpulsation during cardiopulmonary resuscitation. JAMA. Jan 15 1992;267(3):379–85.

    Article  CAS  PubMed  Google Scholar 

  23. Sack JB, Kesselbrenner MB, Jarrad A. Interposed abdominal compression-cardiopulmonary resuscitation and resuscitation outcome during asystole and electromechanical dissociation. Circulation. Dec 1992;86(6):1692–700.

    CAS  PubMed  Google Scholar 

  24. Mateer JR, Stueven HA, Thompson BM, et al. Prehospital IAC-CPR versus standard CPR: paramedic resuscitation of cardiac arrests. Am J Emerg Med. Mar 1985;3(2):143–6.

    Article  CAS  PubMed  Google Scholar 

  25. Tang W, Weil MH, Schock RB, et al. Phased chest and abdominal compression-decompression. A new option for cardiopulmonary resuscitation. Circulation. Mar 4 1997;95(5):1335–40.

    CAS  PubMed  Google Scholar 

  26. Arntz HR, Agrawal R, Richter H, et al. Phased chest and abdominal compression-decompression versus conventional cardiopulmonary resuscitation in out-of-hospital cardiac arrest. Circulation. Aug 14 2001;104(7):768–72.

    Article  CAS  PubMed  Google Scholar 

  27. Christenson JM, Hamilton DR, Scott-Douglas NW, et al. Abdominal compressions during CPR: hemodynamic effects of altering timing and force. J Emerg Med. May–Jun 1992;10(3):257–66.

    Article  CAS  PubMed  Google Scholar 

  28. Yannopoulos D, Tang W, Roussos C, et al. Reducing ventilation frequency during cardiopulmonary resuscitation in a porcine model of cardiac arrest. Respir Care. May 2005;50(5):628–35.

    PubMed  Google Scholar 

  29. Aufderheide TP, Lurie KG. Death by hyperventilation: a common and life-threatening problem during cardiopulmonary resuscitation. Crit Care Med. Sep 2004;32(9 suppl):S345–51.

    Article  PubMed  Google Scholar 

  30. Dickinson ET, Verdile VP, Schneider RM, et al. Effectiveness of mechanical versus manual chest compressions in out-of-hospital cardiac arrest resuscitation: a pilot study. Am J Emerg Med. May 1998;16(3):289–92.

    Article  CAS  PubMed  Google Scholar 

  31. McDonald JL. Systolic and mean arterial pressures during manual and mechanical CPR in humans. Ann Emerg Med. Jun 1982;11(6):292–5.

    Article  CAS  PubMed  Google Scholar 

  32. Ward KR, Menegazzi JJ, Zelenak RR, et al. A comparison of chest compressions between mechanical and manual CPR by monitoring end-tidal PCO2 during human cardiac arrest. Ann Emerg Med. Apr 1993;22(4):669–74.

    Article  CAS  PubMed  Google Scholar 

  33. Halperin HR, Guerci AD, Chandra N, et al. Vest inflation without simultaneous ventilation during cardiac arrest in dogs: improved survival from prolonged cardiopulmonary resuscitation. Circulation. Dec 1986;74(6):1407–15.

    CAS  PubMed  Google Scholar 

  34. Halperin HR, Tsitlik JE, Gelfand M, et al. A preliminary study of cardiopulmonary resuscitation by circumferential compression of the chest with use of a pneumatic vest. N Engl J Med. Sep 9 1993;329(11):762–8.

    Article  CAS  PubMed  Google Scholar 

  35. Casner M, Andersen D, Isaacs SM. The impact of a new CPR assist device on rate of return of spontaneous circulation in out-of-hospital cardiac arrest. Prehosp Emerg Care. Jan–Mar 2005;9(1):61–7.

    Article  PubMed  Google Scholar 

  36. Timerman S, Cardoso LF, Ramires JA, et al. Improved hemodynamic performance with a novel chest compression device during treatment of in-hospital cardiac arrest. Resuscitation. Jun 2004;61(3):273–80.

    Article  PubMed  Google Scholar 

  37. Eynon CA. Minimally invasive direct cardiac massage and defibrillation. Resuscitation. Nov 2000;47(3):325–8.

    Article  CAS  PubMed  Google Scholar 

  38. Rozenberg A, Incagnoli P, Delpech P, et al. Prehospital use of minimally invasive direct cardiac massage (MID-CM): a pilot study. Resuscitation. Sep 2001;50(3):257–62.

    Article  CAS  PubMed  Google Scholar 

  39. Dalton HJ, Rycus PT, Conrad SA. Update on extracorporeal life support 2004. Semin Perinatol. Feb 2005;29(1):24–33.

    Article  PubMed  Google Scholar 

  40. Kelly RB, Porter PA, Meier AH, et al. Duration of cardiopulmonary resuscitation before extracorporeal rescue: how long is not long enough? ASAIO J. Sep–Oct 2005;51(5):665–7.

    Article  PubMed  Google Scholar 

  41. Younger JG, Schreiner RJ, Swaniker F, et al. Extracorporeal resuscitation of cardiac arrest. Acad Emerg Med. Jul 1999;6(7):700–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Lurie, K.G., Metzger, A.K., Yannopoulos, D. (2008). Mechanical Devices to Improve Circulation During Cardiopulmonary Resuscitation. In: Mebazaa, A., Gheorghiade, M., Zannad, F.M., Parrillo, J.E. (eds) Acute Heart Failure. Springer, London. https://doi.org/10.1007/978-1-84628-782-4_74

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-782-4_74

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-781-7

  • Online ISBN: 978-1-84628-782-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics