Skip to main content

Hyponatremia in the Setting of Acute Heart Failure Syndrome

  • Chapter
Acute Heart Failure

Abstract

Hyponatremia is usually defined as a decrease in plasma sodium to a level ≤135 mEq/L. It is the most frequent electrolyte disorder occurring in hospitalized patients.13 Its actual incidence depends on the defined level of hyponatremia: 20% for natremia ≤136 mEq/L and 1% to 4% for natremia <130 mEq/L. This chapter discusses the pathophysiology, diagnosis and principles of treatment of hyponatremia, and suggests specific considerations for hyponatremia occurring in patients with heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. De Luca L, Klein L, Udelson JE, et al. Hyponatremia in patients with heart failure. Am J Cardiol 2005;96(suppl):19L–23L.

    PubMed  Google Scholar 

  2. Anderson RJ, Chung H, Kluge R, Schrier RW. Hyponatremia: a prospective analysis of its epidemiology and the pathogenic role of vasopressin. Ann Intern Med 1985;102:164–8.

    CAS  PubMed  Google Scholar 

  3. Anderson RJ. Hospital-associated hyponatremia. Kidney Int 1986;29:1237–47.

    Article  CAS  PubMed  Google Scholar 

  4. Adrogue HJ, Madias NE. Hyponatremia. N Engl J Med 2000;342:1581–9.

    Article  CAS  PubMed  Google Scholar 

  5. Gennari FJ. Hypo-and hypernatremia: disorders of water balance. In: AM Davidson, JS Cameron, JP Grünfeld, DN Ken, E Ritz, CG Winearls, eds. Oxford Textbook of Clinical Nephrology. Oxford: Oxford University Press, 1998:175–200.

    Google Scholar 

  6. Kumar S, Berl T. Sodium. Lancet 1998;352:220–8.

    Article  CAS  PubMed  Google Scholar 

  7. Sterns RH, Schrier RW, Narins RG. Hyponatremia: physiopathology, diagnosis and therapy. In: Narins RG, ed. Clinical Disorders of Fluid and Electrolyte Metabolism. New York: McGraw-Hill, 1994:583–613.

    Google Scholar 

  8. Zerbe R, Robertson GL. Osmotic and non osmotic regulation of thirst and vasopressin secretion. In: Narins RG, ed. Clinical Disorders of Fluid and Electrolyte Metabolism. New York: McGraw-Hill, 1994:81–100.

    Google Scholar 

  9. Fraser CL, Arieff AI. Epidemiology, pathophysiology and management of hyponatremic encephalopathy. Am J Med 1997;102:67–77.

    Article  CAS  PubMed  Google Scholar 

  10. Preston GM, Carroll TP, Guggino WB, Agre P. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 1992;256:385–7.

    Article  CAS  PubMed  Google Scholar 

  11. Cadnapaphornchai MA, Schrier RW. Pathogenesis and management of hyponatremia. Am J Med 2000;109:688–92.

    Article  CAS  PubMed  Google Scholar 

  12. Adrogue HJ. Consequences of inadequate management of hyponatremia. Am J Nephrol 2005;25:240–9.

    Article  PubMed  Google Scholar 

  13. Goldsmith SR. Current treatments and novel pharmacologic treatments for hyponatremia in congestive heart failure. Am J Cardiol 2005;95(suppl):14B–23B.

    Article  CAS  PubMed  Google Scholar 

  14. Nielsen S, Kwon TH, Christensen BM, Promeneur D, Froklaer J, Marples D. Physiology and pathophysiology of renal aquaporins. J Am Soc Nephrol 1999;10:647–63.

    CAS  PubMed  Google Scholar 

  15. Ichai C, Fenouil E, Grimaud D. Osmolalité et cerveau. Ann Fr Anesth Réanim 1994;13:68–79.

    CAS  PubMed  Google Scholar 

  16. Melton JE, Patlak CS, Pettigrew KD, Cserr HF. Volume regulatory loss of Na, Cl and K from rat brain during acute hyponatremia. Am J Physiol 1987;252:F661–9.

    CAS  PubMed  Google Scholar 

  17. Trachman H. Cell volume regulation: a review of cerebral adaptation mechanisms and implications for clinical treatment of osmolal disturbances: II. Pediatr Nephrol 1992;6:104–12.

    Article  Google Scholar 

  18. Fraser CL, Swanson RA. Female sex hormones inhibit volume regulation in rat brain astrocyte culture. Am J Physiol 1994;267:C909–14.

    CAS  PubMed  Google Scholar 

  19. Ayus JC, Arieff AI. Brain damage and postoperative hyponatremia: the role of gender. Neurology 1996;46:323–8.

    CAS  PubMed  Google Scholar 

  20. Ayus JC, Arieff AI. Chronic hyponatremic encephalopathy in postmenopausal women: association of therapies with morbidity and mortality. JAMA 1999;281:2299–304.

    Article  CAS  PubMed  Google Scholar 

  21. Arieff AI, Kozniewska E, Roberts TP, Vexler ZS, Ayus JC, Kucharczyk J. Age, gender and vasopressin affect survival and brain adaptation in rats with metabolic encephalopathy. Am J Physiol 1995;268:R1143–52.

    CAS  PubMed  Google Scholar 

  22. Arieff AI. Hyponatremia, convulsions, respiratory arrest, and permanent brain damage after elective surgery in healthy women. N Engl J Med 1986;314:1529–35.

    CAS  PubMed  Google Scholar 

  23. Yeates KE, Singer M, Morton AR. Salt and water: a simple approach to hyponatremia. Can Med Assoc J 2004;170:365–9.

    Article  Google Scholar 

  24. Verbalis JG. Hyponatremia and hypoosmolar disorders. In: A Greenberg, ed. Primer on Kidney Diseases. San Diego: Academic Press, 1998:57–63.

    Google Scholar 

  25. Han DS, Chu BS. Therapeutic approach to hyponatremia. Nephron 2002;92(suppl):9–13.

    Article  PubMed  Google Scholar 

  26. Ellis SJ. Severe hyponatraemia: complications and treatment. Q J Med 1995;88:905–9.

    CAS  Google Scholar 

  27. Laureno R, Karp BI. Myelinolysis after correction of hyponatremia. Ann Intern Med 1997;126:57–62.

    CAS  PubMed  Google Scholar 

  28. Decaux G, Soupart A. Treatment of symptomatic hyponatremia. Am J Med Sci 2003;326:25–30.

    Article  PubMed  Google Scholar 

  29. Sterns RH. Severe symptomatic hyponatremia: treatment and outcome. A study of 64 cases. Ann Intern Med 1987;107:656–64.

    CAS  PubMed  Google Scholar 

  30. Lauriat SM, Berl T. The hyponatremic patient: practical focus on therapy. J Am Soc Nephrol 1998;8:1599–607.

    Google Scholar 

  31. Thibonnier M. Vasopressin receptors antagonists in heart failure. Curr Opin Pharmacol 2003;3:683–7.

    Article  CAS  PubMed  Google Scholar 

  32. Jessup M, Brozena S. Heart failure. N Engl J Med 2003, 348:2007–18.

    Article  PubMed  Google Scholar 

  33. Oren RM. Hyponatremia in congestive heart failure. Am J Cardiol 2005;95(suppl):2B–7B.

    Article  CAS  PubMed  Google Scholar 

  34. DeLuca L, Orlandi C, Udelson JE, Fedele F, Gheorghiade M. Overview of vasopressor receptor antagonists in heart failure resulting in hospitalization. Am J Cardiol 2005;96(suppl):24L–33L.

    Article  CAS  Google Scholar 

  35. Goldsmith SR. Congestive heart failure: potential role of arginine vasopressin antagonists in the therapy of heart failure. Congest Heart Fail 2002;8:251–6.

    Article  CAS  PubMed  Google Scholar 

  36. Goldsmith SR, Francis GS, Cowley AW, Levine TB, Cohn JN. Increased plasma arginine vasopressin levels in patients with congestive heart failure. J Am Coll Cardiol 1983;1:1385–90.

    Article  CAS  PubMed  Google Scholar 

  37. Chatterjee K. Neurohormonal activation in congestive heart failure and the role of vasopressin? Am J Cardiol 2005;95(suppl):8B–13B.

    Article  CAS  PubMed  Google Scholar 

  38. Lee CR, Watkins ML, Patterson JH, et al. Vasopressin: a new target for the treatment of heart failure. Am Heart J 2003;146:9–18.

    Article  CAS  PubMed  Google Scholar 

  39. Goldsmith SR, Gheorghiade M. Vasopressin antagonism in heart failure. J Am Coll Cardiol 2005;46:1785–91.

    Article  CAS  PubMed  Google Scholar 

  40. Francis GS, Benedicte C, Johnstone DE, et al. Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure. A substudy of the Studies of Left Ventricular Dysfunction (SOLVD). Circulation 1990;82:1274–9.

    Google Scholar 

  41. Rouleau JL, Packer M, Moye L, et al. Prognostic value of neurohumoral activation in patients with an acute myocardial infarction: effect of captopril. J Am Coll Cardiol 1994;24:583–91.

    CAS  PubMed  Google Scholar 

  42. Swedberg K, Eneroth P, Kjekshus J, Wilhelmsen L. Hormones regulating cardiovascular function in patients with severe congestive heart failure and their relation to mortality. Circulation 1990;82:1730–6.

    CAS  PubMed  Google Scholar 

  43. Gupta S, Neyses L. Diuretic usage in heart failure: a continuing conundrum in 2005. Eur Heart J 2005;26:644–9.

    Article  CAS  PubMed  Google Scholar 

  44. Anand I, Florea VG. Diuretics in chronic heart failure: benefits and hazards. Eur Heart J 2001;3(suppl G):G18.

    Google Scholar 

  45. Greenberg A. Diuretic complications. Am J Med Sci 2000;319:10–24.

    Article  CAS  PubMed  Google Scholar 

  46. Brater C. Diuretic therapy in congestive heart failure. Congest Heart Fail 2000;6:197–201.

    PubMed  Google Scholar 

  47. Chow KM, Szeto CC, Wong TY, Leung CB, Li PK. Risk factors for thiazide-induced hyponatremia. Q J Med 2003;96:911–7.

    CAS  Google Scholar 

  48. Kramer BK, Schweda F, Riegger AJ. Diuretic treatment and resistance in heart failure. Am J Med 1000;106:90–6.

    Article  Google Scholar 

  49. Spital A. Diuretic-induced hyponatremia. Nephrology 1999;19:447–52.

    Article  CAS  Google Scholar 

  50. Sonnenblick M, Friedlander Y, Rosin AJ. Diuretic-induced severe hyponatremia. Review and analysis of 129 reported patients. Chest 1993;103:601–6.

    Article  CAS  PubMed  Google Scholar 

  51. Clark BA, Shannon RP, Rosa RM, Epstein FH. Increased susceptibility to thiazide-induced hyponatremia in the elderly. J Am Soc Nephrol 1994;5:1106–11.

    CAS  PubMed  Google Scholar 

  52. Lee D, Austin PC, Rouleau JL. Predicting mortality among patients hospitalized for heart failure: derivation and validation of a clinical model. JAMA 2003;290:2581–7.

    Article  CAS  PubMed  Google Scholar 

  53. Chin MH, Goldman L. Correlates of major complications or death in patients admitted to the hospital with congestive heart failure. Arch Intern Med 1996;156:1814–20.

    Article  CAS  PubMed  Google Scholar 

  54. Chen MC, Chang HW, Cheng CI, Chen YH, Chai HT. Risk stratification of in-hospital mortality in patients hospitalized for chronic congestive heart failure secondary to non-ischemic cardiomyopathy. Cardiology 2003;100:136–42.

    Article  PubMed  Google Scholar 

  55. Klein L, Gattis WA, Leimberger JD, Pina IL, O’Connor CM, Gheorghiade M. Prognostic value of hyponatremia in hospitalized patients with worsening heart failure: insights from the outcome of a prospective trial of intravenous milrinone for exacerbations of chronic heart failure (OPTIME-CHF). J Card Fail 2003;9(suppl):S83.

    Article  Google Scholar 

  56. Klein L, O’Connor CM, Leimnerger JD, et al. Lower serum sodium is associated with increased short-term mortality in hospitalized patients with worsening heart failure: results from the OPTIME-CHF study. Circulation 2005;111:2454–60.

    Article  CAS  PubMed  Google Scholar 

  57. Licata G, Di Pasquale P, Parrinello G, et al. Effects of high-dose furosemide and small-volume hypertonic saline solution infusion in comparison with a high-dose of furosemide as bolus in refractory congestive heart failure: long term effects. Am Heart J 2003;145:459–66.

    Article  CAS  PubMed  Google Scholar 

  58. Bart BA, Boyle A, Bank AJ, et al. Ultrafiltration versus usual care for hospitalized patients with heart failure. J Am Coll Cardiol 2005;46:2043–6.

    Article  PubMed  Google Scholar 

  59. Sharma A, Hermann DD, Mehta RL. Clinical benefit and approach of ultrafiltration in acute heart failure. Cardiology 2001;96:144–54.

    Article  CAS  PubMed  Google Scholar 

  60. Brause M, Deppe C, Hollenbeck M, et al. Congestive heart failure as an indication for continuous renal replacement therapy. Kidney Int 1999;72(suppl):S95–8.

    Article  Google Scholar 

  61. Simonelli R, Saltarelli G, Violo F. Daily hemofiltration in severe heart failure. Miner Electrolyte Metab 1999;25:38–42.

    Google Scholar 

  62. Marenzi G, Agostino P. Hemofiltration in heart failure. Int J Artif Organs 2004;27:1070–6.

    CAS  PubMed  Google Scholar 

  63. Costanzo MR, Salteberg M, O’Sullivan J, Sobotka P. Early ultrafiltration in patients with decompensated heart failure and diuretic resistance. J Am Coll Cardiol 2005;46:2047–51.

    Article  PubMed  Google Scholar 

  64. Gheorghiade M, Niazi I, Ouyang J, et al. Vasopressin V2-receptor blockade with tolvaptan in patients with chronic heart failure: results from a doubleblind, randomized trial. Circulation 2003;107:2690–6.

    Article  CAS  PubMed  Google Scholar 

  65. Gheorghiade M, Gattis WA, Barbagelata A, et al. Rationale and study design for multicenter, randomized, double-blind, placebo-controlled study of the effect of tolvaptan on the acute and chronic outcomes of patients hospitalized with worsening congestive heart failure. Am J Heart 2003;145:S51–4.

    Article  CAS  Google Scholar 

  66. Gheorghiade M, Gattis WA, O’Connor CM, et al., for the Acute and Chronic Therapeutic Impact of a Vasopressin Antagonist in Congestive Heart Failure (ACTIV in CHF) Investigators. Effects of tolvaptan, a vasopressin antagonist, in patients hospitalized with worsening heart failure: a randomized controlled trial. JAMA 2004;291:1963–71.

    Article  CAS  PubMed  Google Scholar 

  67. Udelson JE, Smith WB, Hendrix GH, et al. Acute hemodynamic effects of conivaptan, a dual V1a and V2 vasopressin receptor antagonist, in patients with advanced heart failure. Circulation 2001;104:2417–23.

    Article  CAS  PubMed  Google Scholar 

  68. Naitoh M, Risvanis J, Balding LC, Johnston CI, Burrell LM. Neurohormonal antagonism in heart failure: beneficial effects of vasopressin V1a and V2 receptor blockade and ACE inhibition. Cardiovasc Res 2002;46:375–81.

    Google Scholar 

  69. Gheorghiade M, Gottlieb SS, Udelson JE, et al. Vasopressin V2 receptor blockade with Tolvaptan versus fluid restriction in the treatment of hyponatremia. Am J Cardiol 2006;97:1064–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Ichai, C., Lena, D. (2008). Hyponatremia in the Setting of Acute Heart Failure Syndrome. In: Mebazaa, A., Gheorghiade, M., Zannad, F.M., Parrillo, J.E. (eds) Acute Heart Failure. Springer, London. https://doi.org/10.1007/978-1-84628-782-4_72

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-782-4_72

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-781-7

  • Online ISBN: 978-1-84628-782-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics