Skip to main content

Normal Physiology and Pathophysiology of Left Ventricular Systole

  • Chapter
Acute Heart Failure

Abstract

Left ventricular (LV) systole is defined as that part of the cardiac cycle wherein active contraction occurs. Contractile performance is a major determinant of overall cardiac function. The final end-systolic pressure and volume are a function of intrinsic cardiac contractility, myocardial energy state, and ventricular-arterial coupling, whereas the developed stroke volume and stroke work are a function of these factors plus end-diastolic volume. Since end-diastolic volume is a primary determinant of systolic function, through the Frank-Starling mechanism, diastolic dysfunction directly alters systolic performance. Diastolic dysfunction is discussed elsewhere in this volume. In this chapter we focus only on systolic events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fonarow GC, Adams KF Jr, Abraham WT, Yancy CW, Boscardin WJ. Risk stratification for in-hospital mortality in acutely decompensated heart failure: classification and regression tree analysis. JAMA 2005;293:572–580.

    Article  CAS  PubMed  Google Scholar 

  2. Noble MI. Problems concerning the application of concepts of muscle mechanics to the determination of the contractile state of the heart. Circulation 1972;45:252–255.

    CAS  PubMed  Google Scholar 

  3. Sagawa K, Maughan WL, Sunagawa K, Suga H. Cardiac Contraction and the Pressure-Volume Relationship. New York: Oxford University Press, 1988:16–17.

    Google Scholar 

  4. Sagawa K, Maughan WL, Sunagawa K, Suga H. Cardiac Contraction and the Pressure-Volume Relationship. New York: Oxford University Press, 1988:8–13.

    Google Scholar 

  5. Fuchs F, Wang Y. Sarcomere length versus inter-filament spacing as determinants of cardiac myo-filament Ca2+ sensitivity and Ca2+ binding. J mol Cell Cardiol 1996;28:1375–1383.

    Article  CAS  PubMed  Google Scholar 

  6. Alverez BV, Perez NG, Ennis IL, Camilion de Hurtado MC, Cingolani HE. Mechanisms underlying the increase in force and Ca2+ transient that follow stretch of cardiac muscle: a possible explanation of the Anrep effect. Circ Res 1999;85:716–722.

    Google Scholar 

  7. Reyes M, Freeman GL, Escobedo D, Lee S, Steinhelper ME, Feldman MD. Enhancement of contractility with sustained afterload in the intact murine heart: blunting of length-dependent activation. Circulation 2003;107:2962–2968.

    Article  PubMed  Google Scholar 

  8. Glower DD, Spratt JA, Snow ND, et al. Linearity of the Frank-Starling relationship in the intact heart: the concept of preload recruitable stroke work. Circulation 1985;71(5):994–1009.

    CAS  PubMed  Google Scholar 

  9. Suga H, Hayashi T, Shirahata M. Ventricular systolic pressure-volume area as predictor of cardiac oxygen consumption. Am J Physiol 1981;240:H39–H44.

    CAS  PubMed  Google Scholar 

  10. Sagawa K, Maughan WL, Sunagawa K, Suga H. Cardiac Contraction and the Pressure-Volume Relationship. New York: Oxford University Press, 1988:38–39.

    Google Scholar 

  11. Suga H, Sagawa K, Shoukas AA. Load-independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res 1973;32:314–322.

    CAS  PubMed  Google Scholar 

  12. Suga H, Sagawa K. Instantaneous pressure-volume relationships and their ratio in the excised supported canine left ventricle. Circ Res 1974;35:117–134.

    CAS  PubMed  Google Scholar 

  13. Shroff SG, Janicki JS, Weber KT. Mechanical and energetic behavior of the intact left ventricle. In: Fozzard HA, et al., eds. The Heart and Cardiovascular System, 2nd ed. New York: Raven Press, 1992:129–150.

    Google Scholar 

  14. Gorcsan J 3rd, Gasior TA, Mandarino WA, Deneault LG, Hattler BG, Pinsky MR. Assessment of the immediate effects of cardiopulmonary bypass on left ventricular performance by on-line pressure-area relations. Circulation 1994;89:180–190.

    PubMed  Google Scholar 

  15. Mulieri LA, Leavitt BJ, Martin BJ. Myocardial force-frequency defect in mitral regurgitation heart failure is reversed by forskolin. Circulation 1993;88:2700–2704.

    CAS  PubMed  Google Scholar 

  16. Hasenfuss G, Reinecke H, Studer R, et al. Relation between myocardial function and expression of sarcoplasmic reticulum Ca2+-ATPase in failing and nonfailing human heart. Circ Res 1994;75:434–442.

    CAS  PubMed  Google Scholar 

  17. Pandian NG, Skorton DJ, Collins SM, Falsetti HL, Burke ER, Kerber RE. Heterogeneity of left ventricular segmental wall thickening and excursion in 2-dimensional echocardiograms of normal human subjects. Am J Cardiol 1983;51:1667–1673.

    Article  CAS  PubMed  Google Scholar 

  18. Thys DM. The intraoperative assessment of regional myocardial performance: Is the cart before the horse? J Cardiothorac Anesth 1987;1:273–275.

    Article  CAS  PubMed  Google Scholar 

  19. LeWinter M, Kent R, Kroener J, Carew T, Covell J. Regional differences in myocardial performance in the left ventricle of the dog. Circ Res 1975;37:191–199.

    CAS  PubMed  Google Scholar 

  20. Haendchen RV, Wyatt HL, Maurer G, Zwehl W, Bear M, Meerbaum S, Corday E. Quantification of regional cardiac function by two-dimensional echocardiography I. Patterns of contraction on the normal left ventricle. Circulation 1983;67:1234–1245.

    CAS  PubMed  Google Scholar 

  21. Xiao HB, Roy C, Gibson DG. Nature of ventricular activation in patients with dilated cardiomyopathy: evidence for bilateral bundle branch block. Br Heart J 1994;72:167–174.

    Article  CAS  PubMed  Google Scholar 

  22. Bonow RO. Regional left ventricular nonuniformity: effects on left ventricular diastolic function in ischemic heart disease, hypertrophic cardiomyopathy, and the normal heart. Circulation 1990;81:III54–III65.

    CAS  PubMed  Google Scholar 

  23. Little W, Reeves R, Arciniegas J, Katholi R, Rogers E. Mechanism of abnormal interventricular septal motion during delayed left ventricular activation. Circulation 1982;65:1486–1491.

    CAS  PubMed  Google Scholar 

  24. Grover M, Glanz SA. Endocardial pacing affects left ventricular end-diastolic volume and performance in the intact anesthetized dog. Circ Res 1983;53:72–83.

    CAS  PubMed  Google Scholar 

  25. Badke FR, Boinay P, Covell JW. Effect of ventricular pacing on regional ventricular performance. Am J Physiol 1980;238:H858–H867.

    CAS  PubMed  Google Scholar 

  26. Park RC, Little WC, O’Rourke RA. Effect of alteration of LV activation sequence on the LV end-systolic pressure-volume relation in closed-chest dogs. Circ Res 1985;57:706–717.

    CAS  PubMed  Google Scholar 

  27. Toussaint JF, Lavergne T, Kerrou K, et al. Ventricular coupling of electrical and mechanical dyssynchronization in heart failure patients. Pacing Clin Electrophysiol 2002;25:178–182.

    Article  PubMed  Google Scholar 

  28. Kass DA, Chen C-H, Curry C, et al. Improved LV mechanics from acute VDD pacing in patients with dilated cardiomyopathy and ventricular conduction delay. Circulation 1999;99:1567–1573.

    CAS  PubMed  Google Scholar 

  29. Mulukutta S, Stetten GD, Jacques DC, Gorcsan J. Quantification of left ventricular phase asynchrony in patients with left bundle branch block using tissue Doppler echocardiography. Circulation 2000;102:II-384.

    Google Scholar 

  30. Prinzen FW, Hunter WC, Wymann BT, McVeigh ER. Mapping of regional myocardial strain and work during ventricular pacing: Experimental study using magnetic imaging tagging. J Am Coll Cardiol 1999;33:1735–1742.

    Article  CAS  PubMed  Google Scholar 

  31. Delhass T, Arts T, Prinzen FW, Reneman RS. Relation between electrical activation time and subepicardial fiber strain in the canine left ventricle. Pflugers Arch 1993;423:78–87.

    Article  Google Scholar 

  32. Miura T, Bhargava V, Guth BD, et al. Increased afterload intensifies asynchronous wall motion and impairs ventricular relaxation. J Appl Physiol 1993;75:389–396.

    CAS  PubMed  Google Scholar 

  33. Shroff SG, Naegelen D, Clark WA. Relation between left ventricular systolic resistance and ventricular rate processes. Am J Physiol 1990;258:H381–H394.

    CAS  PubMed  Google Scholar 

  34. Diedericks J, Leone BJ, Foëx P. Regional differences in left ventricular wall motion in the anesthetized dog. Anesthesiology 1989;70:82–90.

    CAS  PubMed  Google Scholar 

  35. Freedman RA, Alderman EL, Sheffield LT, Saporito M, Fisher LD. Bundle branch block in patients with chronic coronary artery disease: angiographic correlates and prognostic significance. J Am Coll Cardiol 1987;10:73–80.

    CAS  PubMed  Google Scholar 

  36. Strum DP, Pinsky MR. Esmolol-induced regional wall motion abnormalities do not affect regional ventricular elastances. Anesth Analg 2000;90(2):252–261.

    Article  CAS  PubMed  Google Scholar 

  37. Norton JM. Towards consistent definitions for preload and afterload. Adv Physiol Educ 2001;25:53–61.

    CAS  PubMed  Google Scholar 

  38. Francis GS, McDonald KM, Cohn JN. Neurohumoral activation in preclinical heart failure. Circulation 1993;87:IV-90–IV-96.

    CAS  Google Scholar 

  39. Remme WJ. Pharmacological modulation of cardiovascular remodeling: a guide to heart failure therapy. Cardiovasc Drugs Ther 2003;17(4):349–360.

    Article  CAS  PubMed  Google Scholar 

  40. Polyakova V, Hein S, Kostin S, Ziegelhoeffer T, Schaper J. Matrix metalloproteinases and their tissue inhibitors in pressure-overloaded human myocardium during heart failure progression. J Am Coll Cardiol 2004;44(8):1609–1618.

    Article  CAS  PubMed  Google Scholar 

  41. Fedak PW, Verma S, Weisel RD, Li RK. Cardiac remodeling and failure: from molecules to man (part II). Cardiovasc Pathol 2005;14(2):49–60.

    Article  CAS  PubMed  Google Scholar 

  42. Ovechkin AV, Tyagi N, Rodriguez WE, Hayden MR, Moshal KS, Tyagi SC. Role of matrix metalloproteinase-9 in endothelial apoptosis in chronic heart failure in mice. J Appl Physiol 2005;99:2390–2405.

    Google Scholar 

  43. Goldstein S, Ali AS, Sabbah H. Ventricular remodeling. Mechanisms and prevention. Cardiol Clin 1998;16(4):623–632, vii–viii.

    Article  CAS  PubMed  Google Scholar 

  44. Papadopoulos DP, Moyssakis I, Makris TK, et al. Clinical significance of matrix metalloproteinases activity in acute myocardial infarction. Eur Cytokine Netw 2005;16(2):152–160.

    CAS  PubMed  Google Scholar 

  45. Katz AM. Cardiac interstitium in health and disease: the fibrillar collagen network. J Am Coll Cardiol 1989;13:1637–1652.

    Article  Google Scholar 

  46. Woodiwiss AJ, Tsotetsi OJ, Sprott S, et al. Reduction in myocardial collagen cross-linking parallels left ventricular dilatation in rat models of systolic chamber dysfunction. Circulation 2001;103(1):155–160.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Simon, M.A., Pinsky, M.R. (2008). Normal Physiology and Pathophysiology of Left Ventricular Systole. In: Mebazaa, A., Gheorghiade, M., Zannad, F.M., Parrillo, J.E. (eds) Acute Heart Failure. Springer, London. https://doi.org/10.1007/978-1-84628-782-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-782-4_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-781-7

  • Online ISBN: 978-1-84628-782-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics