Skip to main content

Vasopressors in Acute Severe Heart Failure

  • Chapter
Acute Heart Failure

Abstract

The management of heart failure has traditionally rested on a paradigm centering on reducing cardiac work load, and more recently on the antagonism of endogenous chronic pathogenic (over)stimulation with stress hormones such as angiotensin, catecholamines, and aldosterone. Depending on the individual patient, cardiac work load is decreased through a combination of modulating the heart rate, contractility, and perhaps most importantly afterload. As the pressure against which the left ventricle must eject is a main determinant of energy expended, afterload reduction has been a foundation of modern therapy. It is thus counterintuitive that in severe heart failure there is a role for agents whose main effect is to increase afterload. There are, however, clinical situations in which acute heart failure coexists with shock states requiring the use of pressor agents. This chapter discusses the pharmacology of the vasopressor agents approved for use and the clinical situations in which they are useful, and offers general recommendations for their use in acute severe heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rivers E, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med, 2001;345(19):1368–77.

    Article  CAS  PubMed  Google Scholar 

  2. Binanay C, et al. Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: the ESCAPE trial. JAMA, 2005;294(13):1625–33.

    Article  PubMed  Google Scholar 

  3. Shah MR, et al. Impact of the pulmonary artery catheter in critically ill patients: meta-analysis of randomized clinical trials. JAMA, 2005;294(13):1664–70.

    Article  CAS  PubMed  Google Scholar 

  4. Harvey S, et al. Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomised controlled trial. Lancet, 2005;366(9484):472–7.

    Article  PubMed  Google Scholar 

  5. McDonald RH, Jr, et al. Effect of dopamine in man: augmentation of sodium excretion, glomerular filtration rate, and renal plasma flow. J Clin Invest, 1964;43:1116–24.

    Article  CAS  PubMed  Google Scholar 

  6. Bellomo R, et al. Low-dose dopamine in patients with early renal dysfunction: a placebo-controlled randomised trial. Australian and New Zealand Intensive Care Society (ANZICS) Clinical Trials Group. Lancet, 2000;356(9248):2139–43.

    Article  CAS  PubMed  Google Scholar 

  7. Martin C, et al. Norepinephrine or dopamine for the treatment of hyperdynamic septic shock? Chest, 1993;103(6):1826–31.

    Article  CAS  PubMed  Google Scholar 

  8. Regnier B, et al. [Comparative study of the effects of dobutamine and dopamine in septic shock.] Ann Anesthesiol Fr, 1978;19(10):859–62.

    CAS  PubMed  Google Scholar 

  9. Jardin F, et al. Effect of dopamine on intrapulmonary shunt fraction and oxygen transport in severe sepsis with circulatory and respiratory failure. Crit Care Med, 1979;7(6):273–7.

    Article  CAS  PubMed  Google Scholar 

  10. Samii K, et al. Hemodynamic effects of dopamine in septic shock with and without acute renal failure. Arch Surg, 1978;113(12):1414–6.

    CAS  PubMed  Google Scholar 

  11. Drueck C, Welch GW, Pruitt BA, Jr. Hemodynamic analysis of septic shock in thermal injury: treatment with dopamine. Am Surg, 1978;44(7):424–7.

    CAS  PubMed  Google Scholar 

  12. Wilson RF, Sibbald WJ, Jaanimagi JL, Hemodynamic effects of dopamine in critically ill septic patients. J Surg Res, 1976;20(3):163–72.

    Article  CAS  PubMed  Google Scholar 

  13. Winslow EJ, et al. Hemodynamic studies and results of therapy in 50 patients with bacteremic shock. Am J Med, 1973;54(4):421–32.

    Article  CAS  PubMed  Google Scholar 

  14. Van den Berghe G. de Zegher F, Anterior pituitary function during critical illness and dopamine treatment. Crit Care Med, 1996;24(9):1580–90.

    Article  PubMed  Google Scholar 

  15. Meier-Hellmann A, et al. The effects of low-dose dopamine on splanchnic blood flow and oxygen uptake in patients with septic shock. Intensive Care Med, 1997;23(1):31–7.

    Article  CAS  PubMed  Google Scholar 

  16. Marik PE, Mohedin M. The contrasting effects of dopamine and norepinephrine on systemic and splanchnic oxygen utilization in hyperdynamic sepsis. JAMA, 1994;272(17):1354–7.

    Article  CAS  PubMed  Google Scholar 

  17. Hannemann L, et al. Comparison of dopamine to dobutamine and norepinephrine for oxygen delivery and uptake in septic shock. Crit Care Med, 1995;23(12):1962–70.

    Article  CAS  PubMed  Google Scholar 

  18. Hesselvik JF, Brodin B. Low dose norepinephrine in patients with septic shock and oliguria: effects on afterload, urine flow, and oxygen transport. Crit Care Med, 1989;17(2):179–80.

    Article  CAS  PubMed  Google Scholar 

  19. Desjars P, et al. A reappraisal of norepinephrine therapy in human septic shock. Crit Care Med, 1987;15(2):134–7.

    Article  CAS  PubMed  Google Scholar 

  20. Desjars P, et al. Norepinephrine therapy has no deleterious renal effects in human septic shock. Crit Care Med, 1989;17(5):426–9.

    Article  CAS  PubMed  Google Scholar 

  21. Chernow B, Roth BL. Pharmacologic manipulation of the peripheral vasculature in shock: clinical and experimental approaches. Circ Shock, 1986;18(2):141–55.

    CAS  PubMed  Google Scholar 

  22. Martin C, et al. Effect of norepinephrine on the outcome of septic shock. Crit Care Med, 2000;28(8):2758–65.

    Article  CAS  PubMed  Google Scholar 

  23. Martin C, et al. Septic shock: a goal-directed therapy using volume loading, dobutamine and/or norepinephrine. Acta Anaesthesiol Scand, 1990;34(5):413–7.

    Article  CAS  PubMed  Google Scholar 

  24. Murakawa K, Kobayashi A. Effects of vasopressors on renal tissue gas tensions during hemorrhagic shock in dogs. Crit Care Med, 1988;16(8):789–92.

    Article  CAS  PubMed  Google Scholar 

  25. Conger JD, Robinette JB, Guggenheim SJ. Effect of acetylcholine on the early phase of reversible norepinephrine-induced acute renal failure. Kidney Int, 1981;19(3):399–409.

    Article  CAS  PubMed  Google Scholar 

  26. Schaer GL, Fink MP, Parrillo JE. Norepinephrine alone versus norepinephrine plus low-dose dopamine: enhanced renal blood flow with combination pressor therapy. Crit Care Med, 1985;13(6):492–6.

    Article  CAS  PubMed  Google Scholar 

  27. Bellomo R, et al. Effects of norepinephrine on the renal vasculature in normal and endotoxemic dogs. Am J Respir Crit Care Med, 1999;159(4 pt 1):1186–92.

    CAS  PubMed  Google Scholar 

  28. Fukuoka T, et al. Effects of norepinephrine on renal function in septic patients with normal and elevated serum lactate levels. Crit Care Med, 1989;17(11):1104–7.

    Article  CAS  PubMed  Google Scholar 

  29. Marin C, et al. Renal effects of norepinephrine used to treat septic shock patients. Crit Care Med, 1990;18(3):282–5.

    Article  CAS  PubMed  Google Scholar 

  30. Holmes CL, Landry DW, Granton J.T. Science review: vasopressin and the cardiovascular system part 2-clinical physiology. Crit Care, 2004;8(1):15–23.

    Article  PubMed  Google Scholar 

  31. Holmes CL, Landry DW, Granton J.T. Science review: Vasopressin and the cardiovascular system part 1—receptor physiology. Crit Care, 2003;7(6):427–34.

    Article  PubMed  Google Scholar 

  32. Wakatsuki T, Nakaya Y, Inoue I. Vasopressin modulates K(+)-channel activities of cultured smooth muscle cells from porcine coronary artery. Am J Physiol, 1992;263(2 pt 2):H491–6.

    CAS  PubMed  Google Scholar 

  33. Kusano E, et al. Arginine vasopressin inhibits interleukin-1 beta-stimulated nitric oxide and cyclic guanosine monophosphate production via the V1 receptor in cultured rat vascular smooth muscle cells. J Hypertens, 1997;15(6):627–32.

    Article  CAS  PubMed  Google Scholar 

  34. Yamamoto K, et al. Arginine vasopressin inhibits nitric oxide synthesis in cytokine-stimulated vascular smooth muscle cells. Hypertens Res, 1997;20(3):209–16.

    Article  CAS  PubMed  Google Scholar 

  35. Noguera I, et al. Potentiation by vasopressin of adrenergic vasoconstriction in the rat isolated mesenteric artery. Br J Pharmacol, 1997;122(3):431–8.

    Article  CAS  PubMed  Google Scholar 

  36. Landry DW, et al. Vasopressin deficiency contributes to the vasodilation of septic shock. Circulation, 1997;95(5):1122–5.

    CAS  PubMed  Google Scholar 

  37. Dunser MW, et al. Cardiac performance during vasopressin infusion in postcardiotomy shock. Intensive Care Med, 2002;28(6):746–51.

    Article  CAS  PubMed  Google Scholar 

  38. Gold J, et al. Vasopressin in the treatment of milrinone-induced hypotension in severe heart failure. Am J Cardiol, 2000;85(4):506–8, A11.

    Article  CAS  PubMed  Google Scholar 

  39. O’Brien A, Clapp L, Singer M. Terlipressin for norepinephrine-resistant septic shock. Lancet, 2002;359(9313):1209–10.

    Article  PubMed  Google Scholar 

  40. Gregory JS, et al. Experience with phenylephrine as a component of the pharmacologic support of septic shock. Crit Care Med, 1991;19(11):1395–400.

    Article  CAS  PubMed  Google Scholar 

  41. Flancbaum L, et al. A dose-response study of phenylephrine in critically ill, septic surgical patients. Eur J Clin Pharmacol, 1997;51(6):461–5.

    Article  CAS  PubMed  Google Scholar 

  42. Reinelt H, et al. Impact of exogenous betaadrenergic receptor stimulation on hepatosplanchnic oxygen kinetics and metabolic activity in septic shock. Crit Care Med, 1999;27(2):325–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Boyd, J.H., Walley, K.R. (2008). Vasopressors in Acute Severe Heart Failure. In: Mebazaa, A., Gheorghiade, M., Zannad, F.M., Parrillo, J.E. (eds) Acute Heart Failure. Springer, London. https://doi.org/10.1007/978-1-84628-782-4_54

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-782-4_54

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-781-7

  • Online ISBN: 978-1-84628-782-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics