Skip to main content

Pulmonary Artery Catheter in the Intensive Care Unit

  • Chapter
  • 2422 Accesses

Abstract

After its initial description by Swan and Ganz more than 30 years ago (1), the pulmonary artery catheter (PAC) technique rapidly became more and more popular in the following years. To date, the PAC remains the monitoring tool that enables more extensive hemodynamic assessment of the critically ill. Furthermore, its use has stimulated the comprehension of physiologic concepts of hemodynamics and tissue oxygenation in various situations of acute circulatory failure. After years of debate about its adverse effects, recent largescale studies clearly demonstrate that the use of the PAC does not alter the outcome of critically ill patients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Swan HJ, Ganz W, Forrester J, et al. Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med 1970;283:447–51.

    CAS  PubMed  Google Scholar 

  2. Mihm FG, Gettinger A, Hanson CW, 3rd, et al. A multicenter evaluation of a new continuous cardiac output pulmonary artery catheter system. Crit Care Med 1998;26:1346–50.

    Article  CAS  PubMed  Google Scholar 

  3. Burchell SA, Yu M, Takiguchi SA, Ohta RM, et al. Evaluation of a continuous cardiac output and mixed venous oxygen saturation catheter in critically ill surgical patients. Crit Care Med 1997;25:388–91.

    Article  CAS  PubMed  Google Scholar 

  4. Birman H, Haq A, Hew E, Aberman A. Continuous monitoring of mixed venous oxygen saturation in hemodynamically unstable patients. Chest 1984;86:753–6.

    Article  CAS  PubMed  Google Scholar 

  5. Martin C, Auffray JP, Saux P, et al. The axillary vein: an alternative approach for percutaneous pulmonary artery catheterization. Chest 1986;90:694–7.

    Article  CAS  PubMed  Google Scholar 

  6. Leibowitz AB, Halpern NA, Lee MH, et al. Left-sided superior vena cava: a not-so-unusual vascular anomaly discovered during central venous and pulmonary artery catheterization. Crit Care Med 1992;20:1119–22.

    Article  CAS  PubMed  Google Scholar 

  7. Hanson EW, Hannan RL, Baum VC. Pulmonary artery catheter in the coronary sinus: implications of a persistent left superior vena cava for retrograde cardioplegia. J Cardiothorac Vasc Anesth 1998;12:448–9.

    Article  CAS  PubMed  Google Scholar 

  8. Stetz CW, Miller RG, Kelly GE, et al. Reliability of the thermodilution method in the determination of cardiac output in clinical practice. Am Rev Respir Dis 1982;126:1001–4.

    CAS  PubMed  Google Scholar 

  9. Boldt J, Menges T, Wollbruck M, et al. Is continuous cardiac output measurement using thermodilution reliable in the critically ill patient? Crit Care Med 1994;22:1913–8.

    CAS  PubMed  Google Scholar 

  10. Jacquet L, Hanique G, Glorieux D, et al. Analysis of the accuracy of continuous thermodilution cardiac output measurement. Comparison with intermittent thermodilution and Fick cardiac output measurement. Intensive Care Med 1996;22:1125–9.

    Article  CAS  PubMed  Google Scholar 

  11. Bottiger BW, Soder M, Rauch H, et al. Semi-continuous versus injectate cardiac output measurement in intensive care patients after cardiac surgery. Intensive Care Med 1996;22:312–8.

    Article  CAS  PubMed  Google Scholar 

  12. Dhingra VK, Fenwick JC, Walley KR, et al. Lack of agreement between thermodilution and Fick cardiac output in critically ill patients. Chest 2002;122:990–7.

    Article  PubMed  Google Scholar 

  13. Poli de Figueiredo LF, Malbouisson LM, Varicoda EY, et al. Thermal filament continuous thermodilution cardiac output delayed response limits its value during acute hemodynamic instability. J Trauma 1999;47:288–93.

    Article  CAS  PubMed  Google Scholar 

  14. Teboul JL, Zapol WM, Brun-Buisson C, et al. A comparison of pulmonary artery occlusion pressure and left ventricular end-diastolic pressure during mechanical ventilation with PEEP in patients with severe ARDS. Anesthesiology 1989;70:261–6.

    Article  CAS  PubMed  Google Scholar 

  15. Pinsky MR. Pulmonary artery occlusion pressure. Intensive Care Med 2003;29:19–22.

    Article  PubMed  Google Scholar 

  16. Teboul JL, Andrivet P, Ansquer M, et al. A bedside index assessing the reliability of pulmonary occlusion pressure during mechanical ventilation with positive end-expiratory pressure. J Crit Care 1992;7:22–9.

    Article  Google Scholar 

  17. Teboul JL, Pinsky MR, Mercat A, et al. Estimating cardiac filling pressure in mechanically ventilated patients with hyperinflation. Crit Care Med 2000;28:3631–6.

    Article  CAS  PubMed  Google Scholar 

  18. Pinsky M, Vincent JL, De Smet JM. Estimating left ventricular filling pressure during positive endexpiratory pressure in humans. Am Rev Respir Dis 1991;143:25–31.

    CAS  PubMed  Google Scholar 

  19. Raper R, Sibbald WJ. Misled by the wedge? The Swan-Ganz catheter and left ventricular preload. Chest 1986;89:427–34.

    Article  CAS  PubMed  Google Scholar 

  20. Kumar A, Anel R, Bunnell E, et al. Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med 2004;32:691–9.

    Article  PubMed  Google Scholar 

  21. Crexells C, Chatterjee K, Forrester JS, et al. Optimal level of filling pressure in the left side of the heart in acute myocardial infarction. N Engl J Med 1973;289:1263–6.

    Article  CAS  PubMed  Google Scholar 

  22. Nunes S, Ruokonen E, Takala J. Pulmonary capillary pressures during the acute respiratory distress syndrome. Intensive Care Med 2003;29:2174–9.

    Article  PubMed  Google Scholar 

  23. Teboul JL, Andrivet P, Ansquer M, et al. Bedside evaluation of the resistance of large and medium pulmonary veins in various lung diseases. J Appl Physiol 1992;72:998–1003.

    CAS  PubMed  Google Scholar 

  24. Cope DK, Allison RC, Parmentier JL, et al. Measurement of effective pulmonary capillary pressure using the pressure profile after pulmonary artery occlusion. Crit Care Med 1986;14:16–22.

    Article  CAS  PubMed  Google Scholar 

  25. Pinsky MR. Clinical significance of pulmonary artery occlusion pressure. Intensive Care Med 2003;29:175–8.

    PubMed  Google Scholar 

  26. Wiedemann HP. Wedge pressure in pulmonary veno-occlusive disease. N Engl J Med 1986;315:1233.

    CAS  PubMed  Google Scholar 

  27. Teboul JL, Douguet D, Mercat A, et al. Effects of catecholamines on the pulmonary venous bed in sheep. Crit Care Med 1998;26:1569–75.

    Article  CAS  PubMed  Google Scholar 

  28. Bindels AJ, van der Hoeven JG, Meinders AE. Pulmonary artery wedge pressure and extravascular lung water in patients with acute cardiogenic pulmonary edema requiring mechanical ventilation. Am J Cardiol 1999;84:1158–63.

    Article  CAS  PubMed  Google Scholar 

  29. Ferguson ND, Meade MO, Hallett DC, et al. High values of the pulmonary artery wedge pressure in patients with acute lung injury and acute respiratory distress syndrome. Intensive Care Med 2002;28:1073–7.

    Article  PubMed  Google Scholar 

  30. Lemaire F, Teboul JL, Cinotti L, et al. Acute left ventricular dysfunction during unsuccessful weaning from mechanical ventilation. Anesthesiology 1988;69:171–9.

    Article  CAS  PubMed  Google Scholar 

  31. Monnet X, Teboul JL. Invasive measures of left ventricular preload. Curr Opin Crit Care 2006;12:235–40.

    Article  PubMed  Google Scholar 

  32. Michard F, Teboul JL. Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest 2002;121:2000–8.

    Article  PubMed  Google Scholar 

  33. Vincent JL, Weil MH. Fluid challenge revisited. Crit Care Med 2006;34:1333–7.

    Article  PubMed  Google Scholar 

  34. The National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury. N Engl J Med 2006;354:2213–2224.

    Article  Google Scholar 

  35. The National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Comparison of Two Fluid-Management Strategies in Acute Lung Injury. N Engl J Med 2006;354:2564–75.

    Article  Google Scholar 

  36. Vincent JL, Thirion M, Brimioulle S, et al. Thermodilution measurement of right ventricular ejection fraction with a modified pulmonary artery catheter. Intensive Care Med 1986;12:33–8.

    Article  CAS  PubMed  Google Scholar 

  37. Spinale FG, Smith AC, Carabello BA, et al. Right ventricular function computed by thermodilution and ventriculography. A comparison of methods. J Thorac Cardiovasc Surg 1990;99:141–52.

    CAS  PubMed  Google Scholar 

  38. Spinale FG, Mukherjee R, Tanaka R, et al. The effects of valvular regurgitation on thermodilution ejection fraction measurements. Chest 1992;101:723–31.

    Article  CAS  PubMed  Google Scholar 

  39. Hassan E, Roffman DS, Applefeld MM. The value of mixed venous oxygen saturation as a therapeutic indicator in the treatment of advanced congestive heart failure. Am Heart J 1987;113:743–9.

    Article  CAS  PubMed  Google Scholar 

  40. Richard C, Thuillez C, Pezzano M, et al. Relationship between mixed venous oxygen saturation and cardiac index in patients with chronic congestive heart failure. Chest 1989;95:1289–94.

    Article  CAS  PubMed  Google Scholar 

  41. Teboul JL, Annane D, Thuillez C, et al. Effects of cardiovascular drugs on oxygen consumption/oxygen delivery relationship in patients with congestive heart failure. Chest 1992;101:1582–7.

    Article  CAS  PubMed  Google Scholar 

  42. Teboul JL, Graini L, Boujdaria R, et al. Cardiac index vs oxygen-derived parameters for rational use of dobutamine in patients with congestive heart failure. Chest 1993;103:81–5.

    Article  CAS  PubMed  Google Scholar 

  43. Nunez S, Maisel A. Comparison between mixed venous oxygen saturation and thermodilution cardiac output in monitoring patients with severe heart failure treated with milrinone and dobutamine. Am Heart J 1998;135:383–8.

    Article  CAS  PubMed  Google Scholar 

  44. Gattinoni L, Brazzi L, Pelosi P, et al. A trial of goaloriented hemodynamic therapy in critically ill patients. SvO2 Collaborative Group. N Engl J Med 1995;333:1025–32.

    Article  CAS  PubMed  Google Scholar 

  45. Teboul JL, Mercat A, Lenique F, et al. Value of the venous-arterial PCO2 gradient to reflect the oxygen supply to demand in humans: effects of dobutamine. Crit Care Med 1998;26:1007–10.

    Article  CAS  PubMed  Google Scholar 

  46. Patel C, Laboy V, Venus B, et al. Acute complications of pulmonary artery catheter insertion in critically ill patients. Crit Care Med 1986;14:195–7.

    Article  CAS  PubMed  Google Scholar 

  47. Sprung CL, Pozen RG, Rozanski JJ, et al. Advanced ventricular arrhythmias during bedside pulmonary artery catheterization. Am J Med 1982;72:203–8.

    Article  CAS  PubMed  Google Scholar 

  48. Damen J. Ventricular arrhythmias during insertion and removal of pulmonary artery catheters. Chest 1985;88:190–3.

    Article  CAS  PubMed  Google Scholar 

  49. Davies MJ, Cronin KD, Domaingue CM. Pulmonary artery catheterisation. An assessment of risks and benefits in 220 surgical patients. Anaesth Intensive Care 1982;10:9–14.

    CAS  PubMed  Google Scholar 

  50. Iberti TJ, Benjamin E, Gruppi L, et al. Ventricular arrhythmias during pulmonary artery catheterization in the intensive care unit. Prospective study. Am J Med 1985;78:451–4.

    Article  CAS  PubMed  Google Scholar 

  51. Mullerworth MH, Angelopoulos P, Couyant MA, et al. Recognition and management of catheterinduced pulmonary artery rupture. Ann Thorac Surg 1998;66:1242–5.

    Article  CAS  PubMed  Google Scholar 

  52. Tayoro J, Dequin PF, Delhommais A, et al. Rupture of pulmonary artery induced by Swan-Ganz catheter: success of coil embolization. Intensive Care Med 1997;23:198–200.

    Article  CAS  PubMed  Google Scholar 

  53. Ferretti GR, Thony F, Link KM, et al. False aneurysm of the pulmonary artery induced by a Swan-Ganz catheter: clinical presentation and radiologic management. Am J Roentgenol 1996;167:941–5.

    CAS  Google Scholar 

  54. Koh KF, Chen FG. The irremovable swan: a complication of the pulmonary artery catheter. J Cardiothorac Vasc Anesth 1998;12:561–2.

    Article  CAS  PubMed  Google Scholar 

  55. Bhatti WA, Sinha S, Rowlands P. Percutaneous untying of a knot in a retained Swan-Ganz catheter. Cardiovasc Intervent Radiol 2000;23:224–5.

    Article  CAS  PubMed  Google Scholar 

  56. Boyd KD, Thomas SJ, Gold J, Boyd AD. A prospective study of complications of pulmonary artery catheterizations in 500 consecutive patients. Chest 1983;84:245–9.

    Article  CAS  PubMed  Google Scholar 

  57. Richard C, Warszawski J, Anguel N, et al. Early use of the pulmonary artery catheter and outcomes in patients with shock and acute respiratory distress syndrome: a randomized controlled trial. JAMA 2003;290:2713–20.

    Article  CAS  PubMed  Google Scholar 

  58. Ivanov R, Allen J, Calvin JE. The incidence of major morbidity in critically ill patients managed with pulmonary artery catheters: a meta-analysis. Crit Care Med 2000;28(3):615–9.

    Article  CAS  PubMed  Google Scholar 

  59. Shah KB, Rao TL, Laughlin S, et al. A review of pulmonary artery catheterization in 6,245 patients. Anesthesiology 1984;61:271–5.

    Article  CAS  PubMed  Google Scholar 

  60. Connors AF Jr, Speroff T, Dawson NV, et al. The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. JAMA 1996;276:889–97.

    Article  PubMed  Google Scholar 

  61. Binanay C, Califf RM, Hasselblad V, et al; ESCAPE Investigators and ESCAPE Study Coordinators. Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: the ESCAPE trial. JAMA 2005;294:1625–33.

    Article  PubMed  Google Scholar 

  62. Bayram M, De Luca L, Massie MB, et al. Reassessment of dobutamine, dopamine, and milrinone in the management of acute heart failure syndromes. Am J Cardiol 2005;96:47G–58G.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Monnet, X., Teboul, JL. (2008). Pulmonary Artery Catheter in the Intensive Care Unit. In: Mebazaa, A., Gheorghiade, M., Zannad, F.M., Parrillo, J.E. (eds) Acute Heart Failure. Springer, London. https://doi.org/10.1007/978-1-84628-782-4_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-782-4_38

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-781-7

  • Online ISBN: 978-1-84628-782-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics