Skip to main content

An Efficient Algorithm for Deciphering Regulatory Motifs

  • Chapter
  • 853 Accesses

Abstract

The identification of transcription factor binding sites (TFBS) by computational methods is very important in understanding the gene regulatory network. Although many methods have been developed to identifying TFBSs, they generally have relatively low accuracy, especially when the positions of the TFBS are dependent. Motivated by this challenge, an efficient algorithm, IBSS, is developed for the identification of TFBSs. Our results indicate that IBSS outperforms other approaches with a relatively high accuracy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. In:Altman R, Brutlag, D, Karp P, Lathrop R, Searls D (eds) Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology. AAAI Press, Menlo Park, CA.

    Google Scholar 

  2. Brazma A, Jonassen I, Vilo J, Ukkonen E (1998) Predicting gene regulatory elements in silico on a genomic scale. Genome Res 8:1202–1215.

    Google Scholar 

  3. Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268:78–94.

    Article  Google Scholar 

  4. Bussemaker HJ, Li H, Siggia ED (2001) Regulatory element detection using correlation with expression. Nat Genet 27:167–171.

    Article  Google Scholar 

  5. Casella G, Berger RL (2001) Statistical Inference, 2nd ed. Duxbury Press.

    Google Scholar 

  6. Chen GX, Hata N, Zhang MQ (2004) Transcription factor binding element detection using functional clustering of mutant expression dat. Nucleic Acids Res 32:2362–2371.

    Article  Google Scholar 

  7. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo:a sequence logo generator. Genome Res 14:1188–1190.

    Article  Google Scholar 

  8. Duda RO, Hart PE, Stork DG (2000) Pattern Classification, 2nd ed. Wiley-Interscience.

    Google Scholar 

  9. Efron B (2004) Large-scale simultaneous hypothesis testing:the choice of a null hypothesis. J Am Statistical Assoc 99:97–104.

    Google Scholar 

  10. Galas DJ, Eggert M, Waterman MS (1985) Rigorous pattern-recognition methods for DNA sequence:analysis of promoter sequences from Escherichia coli. J Mol Biol 186:117–128.

    Article  Google Scholar 

  11. Harbison CT et al (2004) Transcriptional regulatory code of a eukaryotic genome. Nature 431:99–104.

    Article  Google Scholar 

  12. Lawrence CE, Reilly AA (1990) An expectation maximization (EM) algorithm for the identification and characterization of common sites in unaligned biopolymer sequences. Proteins 7:41–51.

    Article  Google Scholar 

  13. Lawrence CE, Altschul SF, Boguski MS, Liu JS, Neuwald AN,Wootton J (1993) Detecting subtle sequence signals:a Gibbs sampling strategy for multiple alignment. Science 262:208–214.

    Article  Google Scholar 

  14. Lee TI et al (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298:799–804.

    Article  Google Scholar 

  15. Li H, Wang W (2003) Dissecting the transcription networks of a cell using computational genomics. Curr Opin Genet Dev 13:611–616.

    Article  Google Scholar 

  16. Liu XS, Brutlag DL, Liu JS (2001) BioProspector:discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes. Pac Symp Biocomput 6:127–138.

    Google Scholar 

  17. Liu XS, Brutlag DL, Liu JS (2002) An algorithm for finding protein-DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments. Nature Biotech 20:835–839.

    Google Scholar 

  18. Ren B, Robert F, Wyrick J et al (2000) Genome-wide location and function of DNA binding proteins. Science 290:2306–2309.

    Article  Google Scholar 

  19. Roth FP, Hughes JD, Estep PW, Chruch GM (1998) Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nature Biotech 16:939–945.

    Article  Google Scholar 

  20. Staden R (1984) Computer methods to locate signals in nucleic acid sequences. Nucleic Acids Res 13:505–519.

    Article  Google Scholar 

  21. Stormo GD, Hartzell GW (1989) Identifying protein-binding sites from unaligned DNA fragments. Proc Natl Acad Sci USA 86:1183–1187.

    Article  Google Scholar 

  22. Sinha S, Tompa M (2002) Discovery of novel transcription factor binding sites by statistical overrepresentation. Nucleic Acids Res 30:5549–5560.

    Article  Google Scholar 

  23. Sumazin P, Chen GX, Hata N, Smith AD, Zhang T, Zhang MQ (2004) DWE:Discriminating Word Enumerator. Bioinformatics 21:31–38.

    Article  Google Scholar 

  24. Thompson JD, Higgins DG, Gibson TJ (1994) ClustalW:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680.

    Article  Google Scholar 

  25. van Helden J, Andre B, Collado-Vides J (2000) Discovering regulatory elements in non-coding sequences by analysis of spaced dyads. Nucleic Acids Res 28:1808–1818.

    Article  Google Scholar 

  26. Wolfertstetter F, Frech K, Herrmann G, Werner T (1996) Identification of functional elements in unaligned nucleic acid sequences by a novel tuple search algorithm. Bioinformatics 12:71–81.

    Article  Google Scholar 

  27. Zhang MQ, Marr TG (1993) A weight array method for splicing signal analysis. Computer Application in the Biosciences (CABIOS) 9 (5):499–509.

    Google Scholar 

  28. Zhao XY, Huang HY, Speed T (2004) Finding short DNA motifs using permuted Markov models. Proceeding of RECOMB 4:68–75.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Feng, X., Wan, L., Deng, M., Sun, F., Qian, M. (2007). An Efficient Algorithm for Deciphering Regulatory Motifs. In: Feng, J., Jost, J., Qian, M. (eds) Networks: From Biology to Theory. Springer, London. https://doi.org/10.1007/978-1-84628-780-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-780-0_12

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-485-4

  • Online ISBN: 978-1-84628-780-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics