Skip to main content

Active Power-line Conditioners

  • Chapter
Power Quality

Part of the book series: Power Systems ((POWSYS))

Abstract

Nowadays, the active power filters, APFs, can be used as a practical solution to solve the problems caused by the lack of electric power quality, EPQ. The emerging technology of power-electronic devices and the new developments in digital signal processing, DSP, have made possible its practical use. These power filters can fully compensate the nonlinear loads of electrical power systems: harmonics, reactive power, unbalances, etc. So, they can be called active powerline conditioners (APLCs). There are many configurations of APLCs, from shunt and series connection to hybrid passive-active filters. The target is to optimize the design using the advantages of each filter with the different load configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akagi, H. (1992). Trends in Active Power Line Conditioners. Proceedings of the IEEE Industrial Electronics, IECON'92, San Diego, pp. 19–24.

    Google Scholar 

  2. Akagi, H. (1994). Trends in Active Power Line Conditioners. IEEE Transactions on Power Electronics, Vol. 9, No. 3, pp. 263–268.

    Article  Google Scholar 

  3. Akagi, H. (1996). New Trends in Active Filters for Power Conditioning. IEEE Transactions on Industry Applications, Vol. 32, No. 6, pp. 1312–1322.

    Article  Google Scholar 

  4. Akagi, H. (2000). Active and Hybrid Filters for Power Conditioning, ISIE'2000, Cholula, Puebla, Mexico.

    Google Scholar 

  5. Peng, F. Z., Akagi, H., Nabae, A. (1988). A Novel Harmonic Power Filter, Record of PESC'88, pp: 1151–1159.

    Google Scholar 

  6. Quinn, C. A., Mohan, N., Mehta, H. (1993). A Four-Wire, Current-Controlled Converter Provides Harmonic Neutralization in Three-Phase, Four-Wire Systems. Proceedings of Applied Power Electronics Conference and Exposition, APEC '93, pp. 841–846.

    Google Scholar 

  7. Yanchao, J., Fei, W. (1998). 100 kVAr Generalized Active Power Filter. Conference Records of IEEE Industry Applications Conference. Thirty-Third IAS Annual Meeting, 1998, Vol. 3, pp. 2354–2359.

    Google Scholar 

  8. Zhang, W., Asplund, G., Aberg, A., Jonsson, U., Loof, O. (1993). Active DC Filter for HVDC System-a Test Installation in The Konti-Skan DC Link at Lindome Converter Station, IEEE Trans. on Power Delivery, Vol. 8, No. 3, pp. 1599–1606.

    Article  Google Scholar 

  9. Montaño, J. C., Salmerón, P., (1999). Identification of Instantaneous Current Components in Three-Phase Systems. IEE Proc.-Sci. Meas. Technol., Vol 146, No. 5, pp: 227–233.

    Article  Google Scholar 

  10. Montaño, J. C., Salmerón, P., Prieto, J. (2005). Analysis of Power Losses for Instantaneous Compensation of Three-Phase Four-Wire Systems. IEEE Transactions on Power Electronics, Vol. 20, No. 4, pp. 901–907.

    Article  Google Scholar 

  11. Dugan, R. C., McGranaghan, M. F., Beaty, H. W. (1996). Electrical Power Systems Quality. McGraw-Hill. New York.

    Google Scholar 

  12. Henderson, R. D., Rose, P. J. (1994). Harmonics: The Effects on Power Quality and Transformers. IEEE Transactions on Industry Applications, Vol. 30, No. 3, pp. 528–532.

    Article  Google Scholar 

  13. Merhej, S. J., Nichols, W. H. (1994). Harmonic Filtering for the Offshore Industry. IEEE Transactions on Industry Applications, Vol. 30, No. 3, pp. 533–542.

    Article  Google Scholar 

  14. Phipps, J. K., Nelson, J. P., Sen, P. K. (1994). Power Quality and Harmonic Distortion on Distribution Systems. IEEE Trans. on Industry Applications, Vol. 30, No. 2, pp. 476–484.

    Article  Google Scholar 

  15. Redl, R., Tenti, P., Van Wyk, J. D. (1997). Power electronics' polluting effects. IEEE Spectrum, Vol. 34, Issue 5, pp. 32–39.

    Article  Google Scholar 

  16. Habrouk, M. E., Darwish, M. K., Mehta, P. (2000). Active Power Filters: A Review. IEE Proc. Electr. Power Appl., Vol. 147, No. 5, pp. 403-413.

    Article  Google Scholar 

  17. Kriegler, U. (2000). Active filters-basic principles. PCIM 2000, 6th Power Quality Conference, Vol. 1, Nuremberg, Germany.

    Google Scholar 

  18. Singh, B., Al-Haddad, K., Chandra, A. (1999). A Review of Active Filters for Power Quality Improvement. IEEE Transactions on Industrial Electronics, Vol. 46, No. 5, pp. 960–971.

    Article  Google Scholar 

  19. Tolbert, L.M., Hollis, H.D., Hale, P.S., (1996). Evaluation of Harmonic Suppression Devices. Conference Record of the IEEE Thirty-First Industry Applications Conference Annual Meeting, IAS '96, Vol. 4, pp.2340–2347.

    Google Scholar 

  20. Ledwich G. Ghosh A. (2002). A Flexible DSTATCOM Operating in Voltage or Current Control Mode. IEE Proc. Generation, Transm. and Distribution, Vol. 149, No. 2, pp. 215–224.

    Article  Google Scholar 

  21. Aredes, M., Watanabe, E. H. (1995). New Control Algorithms for Series and Shunt Three-Phase Four-Wire Active Power Filters. IEEE Transactions on Power Delivery, Vol. 10, No. 3, pp: 1649–1656.

    Article  Google Scholar 

  22. Dixon, J. W., Venegas, G., Morán, L. A. (1997). A Series Active Power Filter Based on a Sinusoidal Current-Controlled Voltage-Source Inverter'', IEEE Transactions on Industrial Electronics, Vol. 44, No. 5, pp. 612–620.

    Article  Google Scholar 

  23. Morán, L., Pastorini, I., Dixon, J., Wallace, R. (2000). Series Active Power Filter Compensates Current Harmonics and Voltage Unbalance Simultaneously. IEE Proc. Generation, Transm. and Distribution. Vol. 147, No. 1, pp. 31–36.

    Google Scholar 

  24. Wang, Z., Wang, Q., Yao, W. (2001). A Series Active Power Filter Adopting Hybrid Control Approach, IEEE Transactions on Power Electronics, Vol. 16, No. 3, pp. 31–39.

    Google Scholar 

  25. Akagi, H., Fujita, H. (1995). A New Power Line Conditioner for Harmonic Compensation in Power Systems. IEEE Transactions on Power Delivery, Vol. 10, No. 3, pp. 1570–1575.

    Article  Google Scholar 

  26. Fujita, H., Akagi, H. (1990). A Practical Approach to Harmonic Compensation in Power Systems -Series Connections of Passive and Active Filters-. Conference Record of Annual Meeting IEEE Industry Applications Society, Vol. 2, pp. 1107–1112.

    Google Scholar 

  27. Fujita, H., Yamasaki, T., Akagi, H. (2000). A Hybrid Active Filter for Damping of Harmonic Resonance in Industrial Power Systems. IEEE Transactions on Power Electronics, Vol. 15, No. 2, pp. 215–222.

    Article  Google Scholar 

  28. Peng, F. Z. (1998). Application Issues of Active Power Filters, IEEE Industry Applications Magazine, pp: 21–30.

    Google Scholar 

  29. Peng, F. Z. (2001). Harmonic Sources and Filtering Approaches. IEEE Industry Applications Magazine, Vol. 7, No. 4, pp. 18–25.

    Article  Google Scholar 

  30. Aredes, M., Heumann, K., Watanabe, E. H. (1998). An Universal Active Power Line Conditioner. IEEE Trans. on Power Delivery, Vol. 13, No. 2, pp. 545–551.

    Article  Google Scholar 

  31. Fujita, H., Watanabe, Y., Akagi, H. (1999). Control and Analysis of a Unified Power Flow Controller. IEEE Trans. on Power Electronics, Vol. 14, No 6, pp. 1021–1027.

    Article  Google Scholar 

  32. Kamran, F., Habetler, T. G. (1998). Combined Deadbeat Control of a Series-Parallel Converter Combination Used as a Universal Power Filter, IEEE Transactions on Power Electronics, Vol. 13, No 1, pp. 160–168.

    Article  Google Scholar 

  33. Prieto, J., Salmerón, P., Vázquez, J. R., Pérez, A. (2002). A Series-Parallel Configuration of Active Power Filters for VAR and Harmonic Compensation, Proceedings of International Conference on Industrial Electronics IECON'02, Seville, Spain, Vol. 4, pp. 2945–2950.

    Google Scholar 

  34. Ghosh A., Ledwich G. (2002). Power Quality Enhancement using Custom Power Devices. Kluwer Academic Publishers. Boston.

    Google Scholar 

  35. Kazmierkowski, M. P., Malesani, L. (1998). Current Control Techniques for Three-Phase Voltage-Source PWM Converters: A Survey. IEEE Trans. on Industrial Electronics, Vol. 45, No. 5, pp. 691–703.

    Article  Google Scholar 

  36. Yunus, H. I., Bass, R. M. (1996). Comparison of VSI and CSI topologies for singlephase Active Power Filters'', Proccedings of IEEE Power Electronics Specialists Conference, pp. 1892–1896.

    Google Scholar 

  37. Rahman, M. A., Radwan, T. S., Osheiba, A. M., Lashine. A. E. (1997). Analysis of Current Controllers for Voltage-Source Inverter. IEEE Transactions on Industrial Electronics, Vol. 44, No. 4, pp. 477–485.

    Article  Google Scholar 

  38. Akagi, H. (2005). Active harmonic filters. Proceedings of IEEE, Vol. 93, No. 12, pp. 2128–2141.

    Article  Google Scholar 

  39. Aredes, M., Häfner, J., Heumann, K. (1997). Three-Phase four-wire shunt active filter control strategies. IEEE Transactions on Power Electronics, Vol. 12, No. 2, pp. 311–318.

    Article  Google Scholar 

  40. Carrara G., Gardella S., Marchesoni M., Salutari R., Sciutto G. (1992). A New Multilevel PWM method: A Theoretical Analysis. IEEE Transactions on Power Electronics, Vol. 7, No. 3, pp. 497–505.

    Article  Google Scholar 

  41. Lai J. S., Peng F. Z. (1996). Multilevel converters- A New Breed of Power Converters. IEEE Transactions on Industry Applications, Vol. 32, No. 3, pp. 509–517.

    Article  Google Scholar 

  42. Kazmierkowski, M. P., Krishnan R., Blaabjerg F., (Editors) (2002). Control in Power Electronics. Selected Problems. Academic Press, Elsevier Science. San Diego.

    Google Scholar 

  43. Rahmani, S., Al-Haddad, K., Fnaiech, F. (2002). A New PWM Control Technique Applied to Three-Phase Shunt Hybrid Power Filter. Proceedings of International Conference on Industrial Electronics IECON'02, Seville Spain, Vol. 1, pp. 727–732.

    Google Scholar 

  44. Van der Broeck H. W., Skudelny H. C., Stanke G. V. (1988). Analysis and Realization of a Pulsewidht Modulator Based on Space Vector. IEEE Transactions on Industry Applications, Vol. 24, No. 1, pp. 142–150.

    Article  Google Scholar 

  45. Buso S., Malesani L., Mattavelli P. (1998). Comparison of Current Control Techniques for Active Filter Applications, IEEE Transactions on Industrial Electronics, Vol. 45, No. 5, pp. 722–729.

    Article  Google Scholar 

  46. Dixon, J., Tepper, S., Moran, L. (1996). Practical Evaluation of Different Modulation Techniques for Current-Controlled Voltage Source Inverters. IEE Proceedings Electric Power Applications, Vol. 143, Issue 4, pp. 301–306.

    Article  Google Scholar 

  47. Grady, W. M., Samotyj, M. J., Noyola, A. H. (1990). Survey of Active Power Line Conditioning Methodologies. IEEE Transactions on Power Delivery, Vol. 5, No 3, pp: 1536–1542.

    Article  Google Scholar 

  48. Montaño, J. C., Salmerón, P. (1998). Instantaneous and full compensation in threephase systems. IEEE Transaction on Power Delivery, Vol. 13, No. 4, pp. 1342–1347.

    Article  Google Scholar 

  49. Montaño, J. C., Salmerón, P. (2002). Strategies of instantaneous compensation for three-phase four-wire circuits. IEEE Transactions on Power Delivery, Vol. 17, No. 4, pp: 1079-1084.

    Article  Google Scholar 

  50. Sonnenschein, M., Weinhold, M. (1999). Comparison of Time-Domain and Frequency-Domain Control Schemes for Shunt Active Filters. ETEP, Vol. 9, No. 1, pp. 5–16.

    Google Scholar 

  51. Akagi, H., Kanazawa, Y., Nabae. A. (1983). Generalized Theory of the Instantaneous Reactive Power in Three-Phase Circuits. Proceedings IPEC83, Tokio, Japan, pp. 1375– 1386.

    Google Scholar 

  52. Akagi, H., Kanazawa, Y., Nabae. A. (1984). Instantaneous Reactive Power Compensators Comprising Switching Devices without Energy Storage Components. IEEE Transactions on Industry Applications, Vol. IA-20, No. 3, pp. 625–630.

    Google Scholar 

  53. Akagi, H., Ogasawara, S., Kim, H. (1999). The Theory of Instantaneous in Three-Phase Four-Wire Systems: A Comprehensive Approach. IEEE Industry Applications Conference, Vol. 1, pp. 431–439.

    Google Scholar 

  54. Cavallini, A., Montanari, G. C. (1994). Compensation strategies for shunt active-filter control. IEEE Trans. on Power Electronics, Vol. 9, No. 6, pp. 587–593.

    Article  Google Scholar 

  55. Salmerón, P., Montaño, J. C., (1996). Instantaneous Power Components in Polyphase Systems under Nonsinusoidal Conditions. IEE Proc.-Sci. Meas. Technol., Vol 143, No. 2, pp. 151–155.

    Article  Google Scholar 

  56. Salmerón, P., Herrera, R. S. (2006). Distorted and Unbalanced Systems Compensation within Instantaneous Reactive Power Framework. IEEE Transaction on Power Delivery, Vol. 21, No. 3, pp. 1655–1662.

    Article  Google Scholar 

  57. Soares V., Verdelho P., Marques G. D. (2000). An Instantaneous Active and Reactive Current Component Method for Active Filters, IEEE Transactions on Power Electronics, Vol. 15, No. 4, pp. 660–669.

    Article  Google Scholar 

  58. Herrera, R. S., Salmerón, P. (2007) Instantaneous Reactive Power Theory: A Comparative Evaluation of Different Formulations. IEEE Transactions on Power Delivery, Vol. 22, No. 1, pp. 595–604.

    Article  Google Scholar 

  59. Litrán, S. P., Montaño, J. C., Salmerón, P., Alcántara, F. J., Vázquez, J. R. (1999). Control de un filtro activo de potencia para compensación en sistemas trifásicos de cuatro conductores. 6as Jornadas Luso-Espanhola de Enghenharia Electrotécnica, Lisboa, Portugal, Proceedings, Vol IV, Cap II, pp. 203–209.

    Google Scholar 

  60. Duke, R. M., Round, S. D. (1993). The steady-state performance of a controlled current active filter, IEEE Trans. on Power Electronics, Vol. 8, No. 3, pp. 140–146.

    Article  Google Scholar 

  61. Jou, H. L., Wu, J. C., Chu, H. Y. (1994). New single-phase active power filter. IEE Proceedings Electric Power Applications, Vol. 141, No. 3, pp. 129–134.

    Article  Google Scholar 

  62. Superti Furga, G., Tironi, E., Ubezio, G. (1997). Shunt active filter for four wire lowvoltage systems: theoretical operating limits and measures for performance improvement. ETEP, Vol. 7, No. 1, pp. 41–48.

    Google Scholar 

  63. Thomas, T., Haddad, K., Joos, G., Jaafari, A. (1998). Design and Performance of Active Power Filters. IEEE Industry Applications Magazine, Vol. 4, No. 5, pp. 38–46.

    Article  Google Scholar 

  64. Wu, J. C., Jou. H. L. (1996). Simplified Control Method for the Single-Phase Active Power Filter. IEE Proceedings Electric Power Applications, Vol. 143, No. 3, pp. 219–224.

    Article  Google Scholar 

  65. Vázquez, J. R., Salmerón, P. (2003). New active filter control using neural network technologies. IEE Proceedings Electric Power Applications, Vol. 150, No. 2, pp. 139–145.

    Article  Google Scholar 

  66. Alcántara, F. J., Salmerón, P. (2005). A New Technique for Unbalanced Current and Voltage Measurement with Neural Networks. IEEE Trans. On Power Delivery, Vol. 20 No. 2, Mayo 2005. pp. 852–858.

    Google Scholar 

  67. Bonifacio, G., Schiano, A. L., Marino, P., Testa, A. (2000). A New High Performance Shunt Active Filter Based on Digital Control. IEEE Power Engineering Society Winter Meeting, 2000, Vol. IV, pp. 2961–2966.

    Google Scholar 

  68. Singh, B., Singh, B. N., Chandra, N. A., Al-Haddad, K. (2000). DSP-Based Implementation of an Improved Control Algorithm of a Three-Phase Active Filter for Compensation of Unbalanced Non-Linear Loads. ETEP, Vol. 10, No. 1, pp. 29–35.

    Google Scholar 

  69. Jacobs J., Detjen D., Karipidis C. U., De Doncker R. W. (2004). Rapid Prototyping Tools for Power Electronic Systems: Demonstration with shunt Active Power Filters. IEEE Transactions on Power Electronics, Vol. 19, No. 2, pp. 500–507.

    Article  Google Scholar 

  70. Verdelho, P., Marques, G. D. (1997). An active power filter and unbalanced current compensator. IEEE Transactions on Industrial Electronics, Vol. 44, No. 3, pp. 321–328.

    Article  Google Scholar 

  71. Tey L. H., So P. L., Chu Y. C. (2005). Improvement of Power Quality using Adaptive Shunt Active Filter. IEEE Transactions on Power Delivery, Vol. 20, No. 2, pp. 1558–1568.

    Article  Google Scholar 

  72. Vázquez, J. R., Salmerón, P., Prieto, J., Pérez, A. (2002). Practical Implementation of a Three-Phase Active Power Line Conditioner with ANNs Technology. Proceedings of International Conference on Industrial Electronics IECON'02, Seville, Spain, Vol. 1, pp. 739–744.

    Google Scholar 

  73. Salmerón, P., Vázquez, J. R. (2005). Practical design of a Three-Phase Active Power-Line Conditioner Controlled by Artificial Neural Networks. IEEE Transaction on Power Delivery, Vol. 20, No. 2, pp: 1037-1044.

    Article  Google Scholar 

  74. Salmerón, P., Montaño, J. C., Vázquez, J. R., Prieto, J., Vallés, A. P. (2004). Compensation in Nonsinusoidal, Unbalanced Three-Phase Four-Wire Systems with Active Power Line Conditioner. IEEE Transactions on Power Delivery, Vol. 19, No. 4, pp. 1968–1974.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Patricio Salmerón or Jesús R. Vázquez .

Editor information

Antonio Moreno-Muñoz

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Salmerón, P., Vázquez, J.R. (2007). Active Power-line Conditioners . In: Moreno-Muñoz, A. (eds) Power Quality. Power Systems. Springer, London. https://doi.org/10.1007/978-1-84628-772-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-772-5_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-771-8

  • Online ISBN: 978-1-84628-772-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics