Skip to main content

Electronic Loads and Power-quality

  • Chapter
Book cover Power Quality

Part of the book series: Power Systems ((POWSYS))

Abstract

Today's businesses depend heavily on electrical services for lighting, general power, computer hardware and communications hardware. With the generalised use of computers, adjustable-speed drives (ASDs) and other microelectronics loads, the subjects related to power-quality and its relationship to vulnerability of commercial and industrial plants are becoming an increasing concern not only to the utility companies but, what is more, to the end-customer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gulachenski EM. The low cost alternative to UPS. In: Proceedings of the Electro-95 International 1995; 97-107.

    Google Scholar 

  2. Ward DJ. Power quality and the security of electricity supply. Proceedings of the IEEE 2001; 89 (12): 1830–1836.

    Article  Google Scholar 

  3. Pramod P, Edwin L. Power Quality Services: Technologies and Strategies for Energy Providers in the Deregulated Market. The Electricity Journal 1999; 12 (9): 79-84.

    Article  Google Scholar 

  4. Robert E B, Scott P, Vivian WD. After the lights went out. The Electricity Journal 2004; 17(1): 11-15.

    Article  Google Scholar 

  5. Heydt GT. Grand challenges in electric power engineering: extreme system reliability. In: Proceedings of the IEEE Power Engineering Society Summer Meeting 2002; 3: 1695-1697.

    Google Scholar 

  6. Allen GW, Segall D. Monitoring of computer installations for power line disturbances. In: Proceedings of the IEEE PESC 1974; 199-205.

    Google Scholar 

  7. Goldstein M, Speranza PD. The quality of U.S. Commercial AC power. In: Proceedings of the INTELEC 1982; 28-33.

    Google Scholar 

  8. Field Handbook of Power Quality Analysis. Dranetz-BMI; 1998.

    Google Scholar 

  9. Cumbria N, Deregt M, Rao ND. Effects of power disturbances on sensitive loads. In: Proceedings of the Canadian Conference on Electrical and Computer Engineering 1999; 1181-1186.

    Google Scholar 

  10. Koval DO. Computer performance degradation due to their susceptibility to power supply disturbances. In: Proceedings of the Industry Applications Society Annual Meeting 1989; 2: 1754-1760.

    Google Scholar 

  11. Information Technology Industry Council ITIC Curve Application. Available from: http://www.itic.org/iss_pol/techdocs/curve.pdf

    Google Scholar 

  12. Arrillaga J, Bollen MHJ, Watson NR. Power quality following deregulation. Proceedings of the IEEE 2000; 88 (2): 246-261.

    Article  Google Scholar 

  13. Moreno-Muñoz A, Redel M D, González M. Power quality in high-tech campus: a case study. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 2006; 220 (3): 257–269.

    Google Scholar 

  14. Moreno-Muñoz A, Pallarés V, Galisteo P, De-la-Rosa JJG. Study of voltage sag in a highly automated plant. In: Proceedings of the IEEE MELECON 2006; 1060-1063

    Google Scholar 

  15. IEEE Std 493. IEEE recommended practice for the design of reliable industrial and commercial power systems (1997).

    Google Scholar 

  16. IEEE Standard 1346. IEEE Recommended Practice for Evaluating Electric Power System Compatibility With Electronic Process Equipment (1998)

    Google Scholar 

  17. Dugan RC, McGranaghan M, Santoso S, Beaty HW. Electrical Power System Quality. McGraw-Hill 2002.

    Google Scholar 

  18. McGranaghan M, Roettger B. Economic evaluation of power quality. In IEEE Power Engineering Review 2002; 22(2): 8-12.

    Article  Google Scholar 

  19. Standler RB. Protection of small computers from disturbances on the mains. In: Proceedings of the IEEE Industry Application Society Conference 1988; 2:1482-1487.

    Google Scholar 

  20. Stebbins WL. Power line disturbances: a user's perspective on the selection and application of mitigation equipment and techniques. In: Proceedings of the IEEE Textile Industry Technical Conference 1989; 4: 1-7.

    Google Scholar 

  21. Schenung S. Overcoming Cost Reduction Barriers for Advanced Power Quality Mitigation Systems. EPRICSG, 1999. TP-114370.

    Google Scholar 

  22. Moreno-Muñoz A, Oterino D, González M, Olivencia FA, De-la-Rosa JJG. Study of sag compensation with DVR. In: Proceedings of the IEEE MELECON 2006; 990-996.

    Google Scholar 

  23. Available from: http://www.cpccorp.com/tips.htm

    Google Scholar 

  24. Three Phase Power Source Overloading Caused by Small Computers and Electronic Office Equipment. ITI Information Letter, Available from: http://www.itic.org/technical/3phase.htm

    Google Scholar 

  25. Moreno-Muñoz A, De-la-Rosa JJG. Analysis of voltage dips in PWM AC-DC converters. In: Proceedings of the International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2006; S41: 6–9.

    Google Scholar 

  26. Silva CS. Power factor correction with the UC3854. Unitrode Product and Applications Handbook 1995–1996, Unitrode Corporation 1995; 10: 303–322.

    Google Scholar 

  27. Kazerani M, Ziogas PD, Joos G. A novel active current wave shaping technique for solid-state input power factor conditioners. IEEE Transactions on Industrial Electronics 1991; 38 (1): 72–78.

    Article  Google Scholar 

  28. Prasad AR, Ziogas PD, Manias S. An active power correction technique for threephase diode rectifiers. In: Proceedings of the IEEE Power Electronics specialists conference 1989; 58–66.

    Google Scholar 

  29. Moreno-Muñoz A, Pallarés V, Luna J, Flores JM. Switching mode power supply e-learning toolbox. In: Proceedings of the EPE 2003 congress [CD-ROM]: 1-6.

    Google Scholar 

  30. Van-Zyl A, Spée R, Faveluke A, Bhowmik S. Voltage sag ride-through for adjustable-apeed drives with active rectifiers. IEEE Transactions on Industry Application 1998; 34 (6): 1270-1277.

    Article  Google Scholar 

  31. Durán-Gómez JL, Enjeti PN, Ok-Woo B. Effect of voltage sags on adjustable-speed srives: A critical evaluation and an approach to improve performance. IEEE Transactions on Industry Application. 1999; 35 (6): 1440-1449

    Article  Google Scholar 

  32. Xu, J.; Al-Haddad K.; Sicard, P. and Rajagopalan, V. (2001). A novel combined approach to voltage sag ride-through and current waveform improvement for adjustable-speed drives. In: Proceedings of the Power Electronics Specialists Conference, 2001; 3: 1315-1320.

    Google Scholar 

  33. Montero-Hernandez OC, Enjeti PN. Ride-through for critical loads. IEEE Industry Application Magazine 2002; 45-52.

    Google Scholar 

  34. Bollen MHJ. Understanding power quality problems – voltages and interruptions, New York: IEEE Press; 1999.

    Google Scholar 

  35. Todd PC. UC3854, Controlled Power Factor Correction Circuit Design. U-134, Unitrode Application Note 1994; 3: 269-288.

    MathSciNet  Google Scholar 

  36. Mohan N, Undeland TM, Robbins WP. Power Electronics: Converters, Applications, and Design. New York: Wiley 2003.

    Google Scholar 

  37. Stockman K, D'hulster F, Verhaege K, Didden M, Belmans R. Ride-through of adjustable speed drives during voltage dips. Electric Power Systems Research 2003; 66: 49-58.

    Article  Google Scholar 

  38. Bollen MHJ, Zhang LD. Analysis of voltage tolerance of AC adjustable-speed drives for three-phase balanced and unbalanced sags. IEEE Transactions on Industry Application 2000; 36 (3): 904–910.

    Article  Google Scholar 

  39. Zhang W, Feng G, Liu YF, Wu B. A New Power Factor Correction (PFC) Control Method Suitable for Low Cost DSP. In: Proceedings of the INTELEC 2002; 407-414

    Google Scholar 

  40. Annex B2. Available from: http//www.iee.org.uk/PAB/EMC/core.htm

    Google Scholar 

  41. Moreno-Muñoz A, Redel MD. Calm in the campus: power disturbances threaten university life. IEE Power Engineer 2005; 19 (4): 34-37.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Moreno-Muñoz .

Editor information

Antonio Moreno-Muñoz

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moreno-Muñoz, A., de la Rosa, J. (2007). Electronic Loads and Power-quality. In: Moreno-Muñoz, A. (eds) Power Quality. Power Systems. Springer, London. https://doi.org/10.1007/978-1-84628-772-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-772-5_11

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-771-8

  • Online ISBN: 978-1-84628-772-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics