Skip to main content

Optical Imaging and Diagnosis in Bladder Cancer

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Quayle SS, Ames CD, Lieber D, Yan Y, Landman J. Comparison of optical resolution with digital and standard fiberoptic cystoscopes in an in vitro model. Urology 2005;66:489–93.

    Google Scholar 

  2. D’Hallewin MA, El Khatib S, Leroux A, Bezdetnaya L, Guillemin F. Endoscopic confocal fluorescence microscopy of normal and tumor bearing rat bladder. J Urol 2005;174:736–40.

    Article  PubMed  Google Scholar 

  3. Mourant JR, et al. Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics. Appl Optics 1998;37:3586–93.

    Article  CAS  Google Scholar 

  4. Koenig F, et al. Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma. Urology 1998;51:342–5.

    Article  PubMed  CAS  Google Scholar 

  5. Demos SG, Gandour-Edwards R, Ramsamooj R, White RD. Spectroscopic detection of bladder cancer using near-infrared imaging techniques. J Biomed Optics 2004;9:767–71.

    Article  Google Scholar 

  6. Anidjar M, et al. Argon laser induced autofluorescence may distinguish between normal and tumor human urothelial cells: a microspectrofluorimetric study. J Urol 1996;155:1771–4.

    Article  PubMed  CAS  Google Scholar 

  7. Zheng W, Lau W, Cheng C, Soo KC, Olivo M. Optimal excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors. Int. J. Cancer 2003;104:477–81.

    Article  PubMed  CAS  Google Scholar 

  8. Guidelines on limits of exposure to ultraviolet radiation of wavelengths between 180 nm and 400 nm (incoherent optical radiation). The International Non-Ionizing Radiation Committee of the International Radiation Protection Association. Health Phys. 1985;49:331–40.

    Google Scholar 

  9. Kochevar IE. Cytotoxicity and mutagenicity of excimer laser radiation. Lasers Surg Med. 1989;9:440–5.

    Article  PubMed  CAS  Google Scholar 

  10. Chang SC, Buonaccorsi G, MacRobert AJ, Bown SG. 5-Aminolevulinic acid (ALA)-induced protoporphyrin IX fluorescence and photodynamic effects in the rat bladder: an in vivo study comparing oral and intravesical ALA administration. Lasers Surg Med 1997;20:254–64.

    Article  PubMed  CAS  Google Scholar 

  11. Divaris DX, Kennedy JC, Pottier RH. Phototoxic damage to sebaceous glands and hair follicles of mice after systemic administration of 5-aminolevulinic acid correlates with localized protoporphyrin IX fluorescence. Am J Pathol. 1990;136:891–7.

    PubMed  CAS  Google Scholar 

  12. Leveckis J, Burn JL, Brown NJ, Reed MW. Kinetics of endogenous protoporphyrin IX induction by aminolevulinic acid: preliminary studies in the bladder. J Urol 1994;152:550–3.

    PubMed  CAS  Google Scholar 

  13. Pottier RH, et al. Non-invasive technique for obtaining fluorescence excitation and emission spectra in vivo. Photochem Photobiol. 1986;44:679–87.

    Article  PubMed  CAS  Google Scholar 

  14. Xiao Z, et al. Biodistribution of Photofrin II and 5-aminolevulinic acid-induced protoporphyrin IX in normal rat bladder and bladder tumor models: implications for photodynamic therapy. Photochem Photobiol. 1998;67:573–83.

    Google Scholar 

  15. Kriegmair M, et al. Fluorescence photodetection of neoplastic urothelial lesions following intravesical instillation of 5-aminolevulinic acid. Urology 1994;44:836–41.

    Article  PubMed  CAS  Google Scholar 

  16. Kriegmair M, et al. Detection of early bladder cancer by 5-aminolevulinic acid induced porphyrin fluorescence. J Urol. 1996;155:105–9.

    Article  PubMed  CAS  Google Scholar 

  17. Zaak D, et al. Endoscopic detection of transitional cell carcinoma with 5-aminolevulinic acid: results of 1012 fluorescence endoscopies. Urology. 2001;57:690–4.

    Article  PubMed  CAS  Google Scholar 

  18. Ehsan A, Sommer F, Haupt G, Engelmann U. Significance of fluorescence cystoscopy for diagnosis of superficial bladder cancer after intravesical instillation of delta aminolevulinic acid. Urol Int. 2001;67:298–304.

    Article  PubMed  CAS  Google Scholar 

  19. Kriegmair M, et al. Transurethral resection and surveillance of bladder cancer supported by 5-aminolevulinic acid-induced fluorescence endoscopy. Eur Urol. 1999;36:386–92.

    Article  PubMed  CAS  Google Scholar 

  20. Filbeck T, et al. No generalized skin phototoxicity after intravesical application of 5-aminolevulinic acid for fluorescence diagnosis of superficial bladder cancer. Urol Int. 2000;64:126–8.

    Article  PubMed  CAS  Google Scholar 

  21. Holtl L, et al. Photodynamic diagnosis with 5-aminolevulinic acid in the treatment of secondary urethral tumors: first in vitro and in vivo results. Eur Urol. 2001;39:178–82.

    Article  PubMed  CAS  Google Scholar 

  22. Riedl CR, et al. Fluorescence endoscopy with 5-aminolevulinic acid reduces early recurrence rate in superficial bladder cancer. J Urol. 2001;165:1121–3.

    Article  PubMed  CAS  Google Scholar 

  23. Juzenas P, Sharfaei S, Moan J, Bissonnette R. Protoporphyrin IX fluorescence kinetics in UV-induced tumours and normal skin of hairless mice after topical application of 5-aminolevulinic acid methyl ester. J Photochem Photobiol. 2002;B 67:11–7.

    Google Scholar 

  24. Robinson DJ, de Bruijn HS, de Wolf WJ, Sterenborg HJ, Star WM. Topical 5-aminolevulinic acid-photodynamic therapy of hairless mouse skin using two-fold illumination schemes: PpIX fluorescence kinetics, photobleaching and biological effect. Photochem Photobiol. 2000;72:794–802.

    Article  PubMed  CAS  Google Scholar 

  25. Steinbach P, et al. Cellular fluorescence of the endogenous photosensitizer protoporphyrin IX following exposure to 5-aminolevulinic acid. Photochem Photobiol. 1995;62:887–95.

    PubMed  CAS  Google Scholar 

  26. Jichlinski P, et al. Clinical evaluation of a method for detecting superficial surgical transitional cell carcinoma of the bladder by light-induced fluorescence of protoporphyrin IX following the topical application of 5-aminolevulinic acid: preliminary results. Lasers Surg Med. 1997;20:402–8.

    Article  PubMed  CAS  Google Scholar 

  27. Filbeck T, et al. 5-aminolevulinic acid-induced fluorescence endoscopy applied at secondary transurethral resection after conventional resection of primary superficial bladder tumors. Urology 1999;53:77–81.

    Article  PubMed  CAS  Google Scholar 

  28. Lange N, et al. Photodetection of early human bladder cancer based on the fluorescence of 5-aminolaevulinic acid hexylester-induced protoporphyrin IX: a pilot study. Br J Cancer 1999;80:185–93.

    Article  PubMed  CAS  Google Scholar 

  29. D’Hallewin MA, Vanherzeele H, Baert L. Fluorescence detection of flat transitional cell carcinoma after intravesical instillation of aminolevulinic acid. Am J Clin Oncol. 1998;21:223–5.

    Article  PubMed  CAS  Google Scholar 

  30. Hartmann A, et al. Frequent genetic alterations in simple urothelial hyperplasias of the bladder in patients with papillary urothelial carcinoma. Am J Pathol. 1999;154:721–7.

    PubMed  CAS  Google Scholar 

  31. Hartmann A, et al. Occurrence of chromosome 9 and p53 alterations in multifocal dysplasia and carcinoma in situ of human urinary bladder. Cancer Res. 2002;62:809–18.

    PubMed  CAS  Google Scholar 

  32. Simoneau AR, et al. Evidence for two tumor suppressor loci associated with proximal chromosome 9p to q and distal chromosome 9q in bladder cancer and the initial screening for GAS1 and PTC mutations. Cancer Res. 1996;56:5039–43.

    PubMed  CAS  Google Scholar 

  33. Schneeweiss S, Kriegmair M, Stepp H. Is everything all right if nothing seems wrong? A simple method of assessing the diagnostic value of endoscopic procedures when a gold standard is absent. J Urol. 1999;161:1116–9.

    Article  PubMed  CAS  Google Scholar 

  34. Lange N, et al. Routine experimental system for defining conditions used in photodynamic therapy and fluorescence photodetection of (non-) neoplastic epithelia. J Biomed Opt. 2001;6:151–9.

    Article  PubMed  CAS  Google Scholar 

  35. Novo M, Huttmann G, Diddens H. Chemical instability of 5-aminolevulinic acid used in the fluorescence diagnosis of bladder tumours. J Photochem Photobiol. B 1996;34:143–8.

    Article  PubMed  CAS  Google Scholar 

  36. Loh CS, et al. Oral versus intravenous administration of 5-aminolevulinic acid for photodynamic therapy. Br J Cancer. 1993;68:41–51.

    PubMed  CAS  Google Scholar 

  37. Peng Q, Moan J, Warloe T, Nesland JM, Rimington C. Distribution and photosensitizing efficiency of porphyrins induced by application of exogenous 5-aminolevulinic acid in mice bearing mammary-carcinoma. Int J Cancer. 1992;52:433–43.

    Article  PubMed  CAS  Google Scholar 

  38. Peng QA, et al. Distribution of 5-aminolevulinic acid-induced porphyrins in noduloulcerative basal-cell carcinoma. Photochem Photobiol. 1995;62:906–13.

    Article  PubMed  CAS  Google Scholar 

  39. Chang SC, MacRobert AJ, Bown SG. Biodistribution of protoporphyrin IX in rat urinary bladder after intravesical instillation of 5-aminolevulinic acid. J Urol. 1996;155:1744–48.

    Article  PubMed  CAS  Google Scholar 

  40. Iinuma S, Bachor R, Flotte T, Hasan T. Biodistribution and phototoxicity of 5-aminolevulinic acid-induced PpIX in an orthotopic rat bladder tumor model. J Urol. 1995;153:802–6.

    Article  PubMed  CAS  Google Scholar 

  41. Bridges JW, Sargent NS, Upshall DG. Rapid absorption from the urinary bladder of a series of n-alkyl carbamates: a route for the recirculation of drugs. Br J Pharmacol. 1979;66:283–9.

    PubMed  CAS  Google Scholar 

  42. Jain MK, Vaz WL. Dehydration of the lipid-protein microinterface on binding of phospholipase A2 to lipid bilayers. Biochim Biophys Acta. 1987;905:1–8.

    Article  PubMed  CAS  Google Scholar 

  43. Jain MK, Zakim D. The spontaneous incorporation of proteins into preformed bilayers. Biochim Biophys Acta. 1987;906:33–68.

    PubMed  CAS  Google Scholar 

  44. Jocham D, et al. Improved detection and treatment of bladder cancer using hexaminolevulinate imaging: a prospective, phase III multicenter study. J Urol. 2005;174:862–6.

    Article  PubMed  Google Scholar 

  45. D’Hallewin MA, Kamuhabwa AR, Roskams T, de Witte PA, Baert L. Hypericin-based fluorescence diagnosis of bladder carcinoma. BJU Int. 2002;89:760–3.

    Google Scholar 

  46. Hanlon EB, et al. Prospects for in vivo Raman spectroscopy. Phys Med Biol. 2000;45:R1–59.

    Google Scholar 

  47. de Jong BW, et al. Identification of bladder wall layers by Raman spectroscopy. J Urol. 2002;168:1771–8.

    Article  PubMed  Google Scholar 

  48. Crow P, Uff JS, Farmer JA, Wright MP, Stone N. The use of Raman spectroscopy to identify and characterize transitional cell carcinoma in vitro. BJU Int. 2004;93:1232–6.

    Article  PubMed  CAS  Google Scholar 

  49. Huang D, et al. Optical coherence tomography. Science 1991;254:1178–81.

    Article  PubMed  CAS  Google Scholar 

  50. Van Leeuwen TG, Faber DJ, Aalders MC. Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography. IEEE J Selected Topics Quantum Electron. 2003;9:227–33.

    Article  CAS  Google Scholar 

  51. Faber DJ, et al. Oxygen saturation-dependent absorption and scattering of blood. Phys Rev Lett. 2004;,93.

    Google Scholar 

  52. van der Meer FJ, et al. Quantitative optical coherence tomography of arterial wall components. Lasers Med Sci. 2005;20:45–51.

    Article  PubMed  Google Scholar 

  53. Fujimoto JG, et al. Optical biopsy and imaging using optical coherence tomography. Nat Med. 1995;1:970–2.

    Article  PubMed  CAS  Google Scholar 

  54. Schmitt JM, Knuttel A, Yadlowsky M, Eckhaus MA. Optical-coherence tomography of a dense tissue - statistics of attenuation and backscattering. Phys Med Biol. 1994;39:1705–20.

    Article  PubMed  CAS  Google Scholar 

  55. Drexler W, et al. In vivo ultrahigh-resolution optical coherence tomography. Optics Lett. 1999;24:1221–3.

    Article  CAS  Google Scholar 

  56. Xie TQ, Zeidel ML, Pan YT. Detection of tumorigenesis in urinary bladder with optical coherence tomography: optical characterization of morphological changes. Optics Expr 2002;10:1431–43.

    CAS  Google Scholar 

  57. Chan WCW, et al. Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol. 2002;13:40–6.

    Article  PubMed  CAS  Google Scholar 

  58. Santra S, Dutta D, Walter GA, Moudgil BM. Fluorescent nanoparticle probes for cancer imaging. Technol Cancer Res Treatment 2005;4:593–602.

    CAS  Google Scholar 

  59. Munro I, et al. Toward the clinical application of time-domain fluorescence lifetime imaging. J Biomed Opt. 2005;10:051403.

    Article  PubMed  CAS  Google Scholar 

  60. Siegel J, et al. Studying biological tissue with fluorescence lifetime imaging: microscopy, endoscopy, and complex decay profiles. Appl Optics 2003;42:2995–3004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Grimbergen, M., Aalders, M., van Leeuwen, T. (2009). Optical Imaging and Diagnosis in Bladder Cancer. In: de la Rosette, J.J., Manyak, M.J., Harisinghani, M.G., Wijkstra, H. (eds) Imaging in Oncological Urology. Springer, London. https://doi.org/10.1007/978-1-84628-759-6_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-759-6_40

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-514-1

  • Online ISBN: 978-1-84628-759-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics