Skip to main content

Prostate Carcinoma: Radionuclide Imaging and PET

  • Chapter
Imaging in Oncological Urology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Oesterling JE, Martin SK, Bergstralh EJ, Lowe FC. The use of prostate-specific antigen in staging patients with newly diagnosed prostate cancer. Jama. 1993;269:57–60.

    Article  PubMed  CAS  Google Scholar 

  2. Brown ML. Bone scintigraphy in benign and malignant tumors. Radiol Clin North Am. 1993;31:731–8.

    PubMed  CAS  Google Scholar 

  3. Prvulovich EM, Bomanji JB. The role of nuclear medicine inclinical investigation. Bmj. 1998;316:1140–6.

    PubMed  CAS  Google Scholar 

  4. Malhotra P, Berman CG. Evaluation of bone metastases in lung cancer. Improved sensitivity and specificity of PET over bone scanning. Cancer Control. 2002;9:254, 259–60.

    Google Scholar 

  5. Peterson JJ, Kransdorf MJ, O’Connor MI. Diagnosis of occult bone metastases: positron emission tomography. Clin Orthop. 2003;S120–8.

    Google Scholar 

  6. Saad F, Gleason DM, Murray R, et al. Long-term efficacy of zoledronic acid for the prevention of skeletal complications in patients with metastatic hormone-refractory prostate cancer. J Natl Cancer Inst. 2004:96:879–82.

    Article  PubMed  CAS  Google Scholar 

  7. Roudier MP, Vesselle H, True LD, et al. Bone histology at autopsy and matched bone scintigraphy findings in patients with hormone refractory prostate cancer: the effect of bisphosphonate therapy on bone scintigraphy results. Clin Exp Metastasis. 2003;20:171–80.

    Article  PubMed  CAS  Google Scholar 

  8. Schaffer DL, Pendergrass HP. Comparison of enzyme, clinical, radiographic, and radionuclide methods of detecting bone metastases from carcinoma of the prostate. Radiology. 1976;121:431–4.

    PubMed  CAS  Google Scholar 

  9. Andriole GL, Coplen DE, Mikkelsen DJ, Catalona WJ. Sonographic and pathological staging of patients with clinically localized prostate cancer. J Urol. 1989;142:1259–61.

    PubMed  CAS  Google Scholar 

  10. Chybowski FM, Keller JJ, Bergstralh EJ, Oesterling JE. Predicting radionuclide bone scan findings in patients with newly diagnosed, untreated prostate cancer: prostate specific antigen is superior to all other clinical parameters. J Urol.1991;145:313–8.

    PubMed  CAS  Google Scholar 

  11. Lee N, Fawaaz R, Olsson CA, et al. Which patients with newly diagnosed prostate cancer need a radionuclide bone scan? An analysis based on 631 patients. Int J Radiat Oncol Biol Phys. 2000;48:1443–6.

    PubMed  CAS  Google Scholar 

  12. Wolff JM, Zimny M, Borchers H, Wildberger J, Buell U, Jakse G. Is prostate-specific antigen a reliable marker of bone metastasis in patients with newly diagnosed cancer of the prostate? Eur Urol. 1998;33:376–81.

    CAS  Google Scholar 

  13. Gleave ME, Coupland D, Drachenberg D, et al. Ability of serum prostate-specific antigen levels to predict normal bone scans in patients with newly diagnosed prostate cancer. Urology. 1996;47:708–12.

    Article  PubMed  CAS  Google Scholar 

  14. Rudoni M, Antonini G, Favro M, et al. The clinical value of prostate-specific antigen and bone scintigraphy in the staging of patients with newly diagnosed, pathologically proven prostate cancer. Eur J Nucl Med. 1995;22:207–11.

    Article  PubMed  CAS  Google Scholar 

  15. Haukaas S, Roervik J, Halvorsen OJ, Foelling M. When is bone scintigraphy necessary in the assessment of newly diagnosed, untreated prostate cancer? Br J Urol. 1997;79:770–6.

    PubMed  CAS  Google Scholar 

  16. Lee CT, Oesterling JE. Using prostate-specific antigen to eliminate the staging radionuclide bone scan. Urol Clin North Am. 1997;24:389–94.

    Article  PubMed  CAS  Google Scholar 

  17. Wymenga LF, Boomsma JH, Groenier K, Piers DA, Mensink HJ. Routine bone scans in patients with prostate cancer related to serum prostate-specific antigen and alkaline phosphatase. BJU Int. 2001;88:226–30.

    Article  PubMed  CAS  Google Scholar 

  18. Abuzallouf S, Dayes I, Lukka H. Baseline staging of newly diagnosed prostate cancer: a summary of the literature. J Urol. 2004;171:2122–7.

    Article  PubMed  Google Scholar 

  19. Schoder H, Larson SM. Positron emission tomography for prostate, bladder, and renal cancer. Semin Nucl Med. 2004;34:274–92.

    Article  PubMed  Google Scholar 

  20. Terris MK, Klonecke AS, McDougall IR, Stamey TA. Utilization of bone scans in conjunction with prostate-specific antigen levels in the surveillance for recurrence of adenocarcinoma after radical prostatectomy. J Nucl Med. 1991;32:1713–7.

    PubMed  CAS  Google Scholar 

  21. Lawrentschuk N, Webb DR, Mitchell CA. Metastatic prostate cancer to lung with normal prostate specific antigen levels. Hosp Med. 2004;65:116–7.

    PubMed  Google Scholar 

  22. Koizumi M, Yonese J, Fukui I, Ogata E. The serum level of the amino-terminal propeptide of type I procollagen is asensitive marker for prostate cancer metastasis to bone. BJU Int. 2001;87:348–51.

    Article  PubMed  CAS  Google Scholar 

  23. Ornstein DK, Colberg JW, Virgo KS, et al. Evaluation and management of men whose radical prostatectomies failed: results of an international survey. Urology. 1998;52:1047–54.

    Article  PubMed  CAS  Google Scholar 

  24. Tsai DY, Virgo KS, Colberg JW, et al. The age of the urologist affects the postoperative care of prostate carcinoma patients. Cancer 1999;86:1314–21.

    Article  PubMed  CAS  Google Scholar 

  25. Cher ML, Bianco FJ Jr, Lam JS, et al. Limited role of radionuclide bone scintigraphy in patients with prostate specific antigen elevations after radical prostatectomy. J Urol. 1998;160:1387–91.

    Article  PubMed  CAS  Google Scholar 

  26. Kane CJ, Amling CL, Johnstone PA, et al. Limited value of bone scintigraphy and computed tomography in assessing biochemical failure after radical prostatectomy. Urology. 2003;61:607–11.

    Article  PubMed  Google Scholar 

  27. Gomez P, Manoharan M, Kim SS, Soloway MS. Radionuclide bone scintigraphy in patients with biochemical recurrence after radical prostatectomy: when is it indicated? BJU Int. 2004;94:299–302.

    Article  PubMed  Google Scholar 

  28. Thurairaja R, McFarlane JP, Persad R. Radionuclide bone scintigraphy in patients with biochemical recurrence after radical prostatectomy: when is it indicated? BJU Int. 2005;95:189–90.

    Article  PubMed  Google Scholar 

  29. Seitz C, Remzi M, Djavan B. Immediate Treatment after PSA Progression. Eur Urol Supplements. 2005;4:28–42.

    Article  Google Scholar 

  30. Corrie D, Timmons JH, Bauman JM, Thompson IM. Efficacy of follow-up bone scans in carcinoma of the prostate. Cancer. 1988;61:2453–4.

    Article  PubMed  CAS  Google Scholar 

  31. Yap BK, Choo R, Deboer G, Klotz L, Danjoux C, Morton G. Are serial bone scans useful for the follow-up of clinically localized, low to intermediate grade prostate cancer managed with watchful observation alone? BJU Int. 2003;91:613–7.

    Article  PubMed  CAS  Google Scholar 

  32. Freitas JE, Gilvydas R, Ferry JD, Gonzalez JA. The clinical utility of prostate-specific antigen and bone scintigraphy in prostate cancer follow-up. J Nucl Med. 1991;32:1387–90.

    PubMed  CAS  Google Scholar 

  33. Bushnell DL, Madsen M, Kahn D, Nathan M, Williams RD. Enhanced uptake of 99Tcm-MDP in skeletal metastases from prostate cancer following initiation of hormone treatment: potential for increasing delivery of therapeutic agents. Nucl Med Commun. 1999;20:875–81.

    PubMed  CAS  Google Scholar 

  34. Rigaud J, Tiguert R, Le Normand L, et al. Prognostic value of bone scan in patients with metastatic prostate cancer treated initially with androgen deprivation therapy. J Urol. 2002;168:1423–6.

    Article  PubMed  Google Scholar 

  35. Noguchi M, Kikuchi H, Ishibashi M, Noda S. Percentage of the positive area of bone metastasis is an independent predictor of disease death in advanced prostate cancer. Br J Cancer. 2003;88:195–201.

    Article  PubMed  CAS  Google Scholar 

  36. Campa JA III, Payne R. The management of intractable bone pain: a clinician’s perspective. Semin Nucl Med. 1992;22:3–10.

    Article  PubMed  Google Scholar 

  37. Robinson RG, Preston DF, Spicer JA, Baxter KG. Radionuclide therapy of intractable bone pain: emphasis on strontium-89. Semin Nucl Med. 1992: 22:28–32.

    Article  PubMed  CAS  Google Scholar 

  38. Robinson RG, Preston DF, Schiefelbein M, Baxter KG. Strontium 89 therapy for the palliation of pain due to osseous metastases. Jama. 1995:274:420–4.

    Article  PubMed  CAS  Google Scholar 

  39. Maxon HR III, Thomas SR, Hertzberg VS, et al. Rhenium-186 hydroxyethylidene diphosphonate for the treatment of painful osseous metastases. Semin Nucl Med. 1992;22:33–40.

    Article  PubMed  Google Scholar 

  40. Han SH, de Klerk JM, Tan S, et al. The PLACORHEN study: a double-blind, placebo-controlled, randomized radionuclide study with (186)Re-etidronate in hormone-resistant prostate cancer patients with painful bone metastases. Placebo Controlled Rhenium Study. J Nucl Med. 2002;43:1150–6.

    PubMed  CAS  Google Scholar 

  41. Collins C, Eary JF, Donaldson G, et al. Samarium-153-EDTMP in bone metastases of hormone refractory prostate carcinoma: a phase I/II trial. J Nucl Med. 1993;34:1839–44.

    PubMed  CAS  Google Scholar 

  42. Turner JH, Martindale AA, Sorby P, et al. Samarium-153 EDTMP therapy of disseminated skeletal metastasis. Eur J Nucl Med 1989;15:784–95.

    Article  PubMed  CAS  Google Scholar 

  43. Srivastava SC, Atkins HL, Krishnamurthy GT, et al. Treatment of metastatic bone pain with tin-117m Stannic diethylenetriaminepentaacetic acid: a phase I/II clinical study. Clin Cancer Res. 1998;4:61–8.

    PubMed  CAS  Google Scholar 

  44. Sartor O. Radioisotopic treatment of bone pain from metastatic prostate cancer. Curr Oncol Rep. 2003:5:258–62.

    Google Scholar 

  45. Oyen WJ, Witjes JA, Corstens FH. Nuclear medicine techniques for the diagnosis and therapy of prostate carcinoma. Eur Urol. 2001;40:294–9.

    Article  PubMed  CAS  Google Scholar 

  46. Silberstein EB, Eugene L, Saenger SR. Painful osteoblastic metastases: the role of nuclear medicine. Oncology (Huntingt). 2001;15:157–63; discussion 167–170, 174.

    CAS  Google Scholar 

  47. Brush JP. Positron emission tomography in urological malignancy. Curr Opin Urol. 2001;11:175–9.

    Article  PubMed  CAS  Google Scholar 

  48. Bachor R, Kotzerke J, Gottfried HW, Brandle E, Reske SN, Hautmann R. Positron emission tomography in diagnosis of renal cell carcinoma. Urologe A. 1996;35:146–50.

    PubMed  CAS  Google Scholar 

  49. Sung J, Espiritu JI, Segall GM, Terris MK. Fluorodeoxyglucose positron emission tomography studies in the diagnosis and staging of clinically advanced prostate cancer. BJU Int. 2003;92:24–7.

    Article  PubMed  CAS  Google Scholar 

  50. Hain SF, Maisey MN. Positron emission tomography for urological tumours. BJU Int. 2003;92:159–64.

    Article  PubMed  CAS  Google Scholar 

  51. Putra LJ, Lawrentschuk N, Ballok Z, et al. 18F-fluorodeoxyglucose positron emission tomography in evaluation of germ cell tumor after chemotherapy. Urology.2004;64:1202–7.

    Google Scholar 

  52. De Santis M, Becherer A, Bokemeyer C, et al. 2-18 fluoro-deoxy-D-glucose positron emission tomography is a reliable predictor for viable tumor in postchemotherapy seminoma: an update of the prospective multicentric SEMPET trial. J Clin Oncol. 2004;22:1034–9.

    Article  PubMed  Google Scholar 

  53. Hoh CK, Seltzer MA, Franklin J, deKernion JB, Phelps ME, Belldegrun A. Positron emission tomography in urological oncology. J Urol. 1998;159:347–56.

    Google Scholar 

  54. Tuzel E, Sevinc M, Obuz F, Sade M, Kirkali Z. Is magnetic resonance imaging necessary in the staging of prostate cancer? Urol Int. 1998;61:227–31.

    Article  PubMed  CAS  Google Scholar 

  55. Barbieri A, Monica B, Sebastio N, Incarbone GP, Di Stefano C. [Value and limitations of transrectal ultrasonography and computer tomography in preoperative staging of prostate carcinoma]. Acta Biomed Ateneo Parmense. 1997;68:23–6.

    PubMed  CAS  Google Scholar 

  56. Jung JA, Coakley FV, Vigneron DB, et al. Prostate depiction at endorectal MR spectroscopic imaging: investigation of a standardized evaluation system. Radiology. 2004;233:701–8.

    Article  PubMed  Google Scholar 

  57. Bujenovic S. The role of positron emission tomography in radiation treatment planning. Semin Nucl Med. 2004;34:293–9.

    Article  PubMed  Google Scholar 

  58. Beyer T, Townsend DW, Brun T, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med. 2000;41:1369–79.

    PubMed  CAS  Google Scholar 

  59. Picchio M, Messa C, Landoni C, et al. Value of [11C] choline-positron emission tomography for re-staging prostate cancer: a comparison with [18F]fluorodeoxyglucose-positron emission tomography. J Urol. 2003;169:1337–40.

    Article  PubMed  CAS  Google Scholar 

  60. Ramdave S, Thomas GW, Berlangieri SU, et al. Clinical role of F-18 fluorodeoxyglucose positron emission tomography for detection and management of renal cell carcinoma. J Urol. 2001;166:825–30.

    Article  PubMed  CAS  Google Scholar 

  61. Diehl M, Manolopoulou M, Risse J, et al. Urinary fluorine-18 fluorodeoxyglucose excretion with and without intravenous application of furosemide. Acta Med Austriaca. 2004;31:76–8.

    PubMed  Google Scholar 

  62. Effert PJ, Bares R, Handt S, Wolff JM, Bull U, Jakse G. Metabolic imaging of untreated prostate cancer by positron emission tomography with 18fluorine-labeled deoxyglucose. J Urol. 1996;155:994–8.

    Article  PubMed  CAS  Google Scholar 

  63. Shreve PD, Anzai Y, Wahl RL. Pitfalls in oncologic diagnosis with FDG PET imaging: physiologic and benign variants. Radiographics. 1999;19:61–77; quiz 150–151.

    PubMed  CAS  Google Scholar 

  64. Hofer C, Laubenbacher C, Block T, Breul J, Hartung R, Schwaiger M. Fluorine-18-fluorodeoxyglucose positron emission tomography is useless for the detection of local recurrence after radical prostatectomy. Eur Urol. 1999;36:31–5.

    Article  PubMed  CAS  Google Scholar 

  65. Seltzer MA, Barbaric Z, Belldegrun A, et al. Comparison of helical computerized tomography, positron emission tomography and monoclonal antibody scans for evaluation of lymph node metastases in patients with prostate specific antigen relapse after treatment for localized prostate cancer. J Urol.1999;162:1322–8.

    Google Scholar 

  66. Mathews D, Oz OK. Positron emission tomography in prostate and renal cell carcinoma. Curr Opin Urol. 2002;12:381–5.

    Article  PubMed  Google Scholar 

  67. Hofer C, Kubler H, Hartung R, Breul J, Avril N. Diagnosis and monitoring of urological tumors using positron emission tomography. Eur Urol. 2001;40:481–7.

    Article  PubMed  CAS  Google Scholar 

  68. Oyama N, Akino H, Suzuki Y, et al. FDG PET for evaluating the change of glucose metabolism in prostate cancer after androgen ablation. Nucl Med Commun. 2001;22:963–9.

    Article  PubMed  CAS  Google Scholar 

  69. Shreve PD, Grossman HB, Gross MD, Wahl RL. Metastatic prostate cancer: initial findings of PET with 2-deoxy-2-[F-18] fluoro-D-glucose. Radiology. 1996;199:751–6.

    PubMed  CAS  Google Scholar 

  70. Zeisel SH. Choline: an essential nutrient for humans. Nutrition. 2000;16:669–71.

    Article  PubMed  CAS  Google Scholar 

  71. Kwee SA, Coel MN, Lim J, Ko JP. Prostate cancer localization with 18fluorine fluorocholine positron emission tomography. J Urol. 2005;173:252–5.

    PubMed  Google Scholar 

  72. Ackerstaff E, Pflug BR, Nelson JB, Bhujwalla ZM. Detection of increased choline compounds with proton nuclear magnetic resonance spectroscopy subsequent to malignant transformation of human prostatic epithelial cells. Cancer Res. 2001;61:3599–603.

    PubMed  CAS  Google Scholar 

  73. Sutinen E, Nurmi M, Roivainen A, et al. Kinetics of [(11)C]choline uptake in prostate cancer: a PET study. Eur J Nucl Med Mol Imaging. 2004;31:317–24.

    Article  PubMed  CAS  Google Scholar 

  74. Hara T, Kosaka N, Kishi H. Development of (18)F-fluoroethylcholine for cancer imaging with PET: synthesis, biochemistry, and prostate cancer imaging. J Nucl Med. 2002;43:187–99.

    PubMed  CAS  Google Scholar 

  75. Hatazawa J, Ishiwata K, Itoh M, et al. Quantitative evaluation of L-[methyl-C-11] methionine uptake in tumor using positron emission tomography. J Nucl Med. 1989;30:1809–13.

    PubMed  CAS  Google Scholar 

  76. Macapinlac HA, Humm JL, Akhurst T, et al. Differential Metabolism and Pharmacokinetics of L-[1-(11)C]-Methionine and 2-[(18)F] Fluoro-2-deoxy-D-glucose (FDG) in Androgen Independent Prostate Cancer. Clin Positron Imaging. 1999;2:173–81.

    Article  PubMed  Google Scholar 

  77. Nunez R, Macapinlac HA, Yeung HW, et al. Combined 18F-FDG and 11C-methionine PET scans in patients with newly progressive metastatic prostate cancer. J Nucl Med. 2002;43:46–55.

    PubMed  Google Scholar 

  78. Yoshimoto M, Waki A, Yonekura Y, et al. Characterization of acetate metabolism in tumor cells in relation to cell proliferation: acetate metabolism in tumor cells. Nucl Med Biol. 2001;28:117–22.

    Article  PubMed  CAS  Google Scholar 

  79. Oyama N, Akino H, Kanamaru H, et al. 11C-acetate PET imaging of prostate cancer. J Nucl Med. 2002;43:181–6.

    PubMed  CAS  Google Scholar 

  80. Shreve P, Chiao PC, Humes HD, Schwaiger M, Gross MD. Carbon-11-acetate PET imaging in renal disease. J Nucl Med. 1995;36:1595–601.

    PubMed  CAS  Google Scholar 

  81. Kato T, Tsukamoto E, Kuge Y, et al. Accumulation of [11C]acetate in normal prostate and benign prostatic hyperplasia: comparison with prostate cancer. Eur J Nucl Med Mol Imaging. 2002;29:1492–5.

    Article  PubMed  CAS  Google Scholar 

  82. Zanzonico PB, Finn R, Pentlow KS, et al. PET-based radiation dosimetry in man of 18F-fluorodihydrotestosterone, a new radiotracer for imaging prostate cancer. J Nucl Med. 2004;45:1966–71.

    PubMed  CAS  Google Scholar 

  83. Oyama N, Ponde DE, Dence C, Kim J, Tai YC, Welch MJ. Monitoring of therapy in androgen-dependent prostate tumor model by measuring tumor proliferation. J Nucl Med. 2004;45:519–25.

    PubMed  CAS  Google Scholar 

  84. Liu IJ, Zafar MB, Lai YH, Segall GM, Terris MK.Fluorodeoxyglucose positron emission tomography studies in diagnosis and staging of clinically organ-confined prostate cancer. Urology. 2001;57:108–11.

    Google Scholar 

  85. Oyama N, Miller TR, Dehdashti F, et al. 11C-acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J Nucl Med. 2003;44:549–55.

    PubMed  CAS  Google Scholar 

  86. Oyama N, Akino H, Suzuki Y, et al. Prognostic value of 2-deoxy-2-[F-18]fluoro-D-glucose positron emission tomography imaging for patients with prostate cancer. Mol Imaging Biol. 2002;4:99–104.

    Article  PubMed  Google Scholar 

  87. Yang SN, Liang JA, Lin FJ, Kao CH, Lin CC, Lee CC. Comparing whole body (18)F-2-deoxyglucose positron emission tomography and technetium-99m methylene diphosphonate bone scan to detect bone metastases in patients with breast cancer. J Cancer Res Clin Oncol. 2002;128:325–8.

    Article  PubMed  CAS  Google Scholar 

  88. Cook GJ, Houston S, Rubens R, Maisey MN, Fogelman I. Detection of bone metastases in breast cancer by 18FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions. J Clin Oncol. 1998;16:3375–79.

    PubMed  CAS  Google Scholar 

  89. Nakamoto Y, Osman M, Wahl RL. Prevalence and patterns of bone metastases detected with positron emission tomography using F-18 FDG. Clin Nucl Med. 2003;28:302–7.

    Article  PubMed  Google Scholar 

  90. el-Gabry EA, Halpern EJ, Strup SE, Gomella LG. Imaging prostate cancer: current and future applications. Oncology (Huntingt). 2001;15:325–6; discussion 339–342.

    CAS  Google Scholar 

  91. Babaian RJ, Murray JL, Lamki LM, et al. Radioimmunological imaging of metastatic prostatic cancer with 111indium-labeled monoclonal antibody PAY 276. J Urol. 1987;137:439–43.

    PubMed  CAS  Google Scholar 

  92. Haseman MK, Rosenthal SA, Polascik TJ. Capromab Pendetide imaging of prostate cancer. Cancer Biother Radiopharm. 2000;15:131–40.

    Article  PubMed  CAS  Google Scholar 

  93. Bermejo CE, Coursey J, Basler J, Austenfeld M, Thompson I. Histologic confirmation of lesions identified by Prostascint scan following definitive treatment. Urol Oncol. 2003;21:349–52; discussion 353.

    PubMed  Google Scholar 

  94. Freeman LM, Krynyckyi BR, Li Y, et al. The role of (111) In Capromab Pendetide (Prosta-ScintR) immunoscintigraphy in the management of prostate cancer. Q J Nucl Med. 2002;46:131–7.

    PubMed  CAS  Google Scholar 

  95. Nargund V, Al Hashmi D, Kumar P, et al. Imaging with radiolabelled monoclonal antibody (MUJ591) to prostate-specific membrane antigen in staging of clinically localized prostaticcarcinoma: comparison with clinical, surgical and histological staging. BJU Int. 2005;95:1232–6.

    Article  PubMed  Google Scholar 

  96. Kelty NL, Holder LE, Khan SH. Dual-isotope protocol for indium-111 capromab pendetide monoclonal antibody imaging. J Nucl Med Technol. 1998;26:174–7.

    PubMed  CAS  Google Scholar 

  97. Sodee DB, Faulhaber PF, Nelson AD, Bakale G. The prognostic significance of indium-111-capromab penetide. J Clin Oncol. 2004;22:379–80; author reply 380–371.

    Article  PubMed  CAS  Google Scholar 

  98. Schettino CJ, Kramer EL, Noz ME, Taneja S, Padmanabhan P, Lepor H. Impact of fusion of indium-111 capromab pendetide volume data sets with those from MRI or CT in patients with recurrent prostate cancer. AJR Am J Roentgenol. 2004;183:519–24.

    PubMed  Google Scholar 

  99. Hinkle GH, Burgers JK, Neal CE, et al. Multicenter radioimmunoscintigraphic evaluation of patients with prostate carcinoma using indium-111 capromab pendetide. Cancer. 1998;83:739–47.

    Article  PubMed  CAS  Google Scholar 

  100. Polascik TJ, Manyak MJ, Haseman MK, et al. Comparison of clinical staging algorithms and 111indium-capromab pendetide immunoscintigraphy in the prediction of lymph node involvement in high risk prostate carcinoma patients. Cancer. 1999;85:1586–92.

    Article  PubMed  CAS  Google Scholar 

  101. Sodee DB, Malguria N, Faulhaber P, Resnick MI, Albert J, Bakale G. Multicenter ProstaScint imaging findings in 2154 patients with prostate cancer. The ProstaScint Imaging Centers. Urology. 2000;56:988–93.

    Article  PubMed  CAS  Google Scholar 

  102. Kahn D, Williams RD, Haseman MK, Reed NL, Miller SJ, Gerstbrein J. Radioimmunoscintigraphy with In-111-labeled capromab pendetide predicts prostate cancer response to salvage radiotherapy after failed radical prostatectomy. J Clin Oncol. 1998;16:284–9.

    PubMed  CAS  Google Scholar 

  103. Murphy GP, Maguire RT, Rogers B, et al. Comparison of serum PSMA, PSA levels with results of Cytogen-356 ProstaScint scanning in prostatic cancer patients. Prostate. 1997:33:281–5.

    Article  PubMed  CAS  Google Scholar 

  104. Jani AB, Blend MJ, Hamilton R, et al. Radioimmunoscintigraphy for postprostatectomy radiotherapy: analysis of toxicity and biochemical control. J Nucl Med. 2004;45:1315–22.

    PubMed  CAS  Google Scholar 

  105. Elgamal AA, Troychak MJ, Murphy GP. ProstaScint scan may enhance identification of prostate cancer recurrences after prostatectomy, radiation, or hormone therapy: analysis of 136 scans of 100 patients. Prostate. 1998;37:261–9.

    Article  PubMed  CAS  Google Scholar 

  106. Murphy GP, Elgamal AA, Troychak MJ, Kenny GM. Follow-up ProstaScint scans verify detection of occult soft-tissue recurrence after failure of primary prostate cancer therapy. Prostate. 2000;42:315–7.

    Article  PubMed  CAS  Google Scholar 

  107. Kahn D, Williams RD, Seldin DW, et al. Radioimmunoscintigraphy with 111indium labeled CYT-356 for the detection of occult prostate cancer recurrence. J Urol. 1994;152:1490–5.

    PubMed  CAS  Google Scholar 

  108. Petronis JD, Regan F, Lin K. Indium-111 capromab pendetide (ProstaScint) imaging to detect recurrent and metastatic prostate cancer. Clin Nucl Med. 1998;23:672–7.

    Article  PubMed  CAS  Google Scholar 

  109. Kahn D, Williams RD, Manyak MJ, et al. 111Indium-capromab pendetide in the evaluation of patients with residual or recurrent prostate cancer after radical prostatectomy. The ProstaScint Study Group. J Urol. 1998;159:2041–6; discussion 2046–2047.

    Article  PubMed  CAS  Google Scholar 

  110. Levesque PE, Nieh PT, Zinman LN, Seldin DW, Libertino JA. Radiolabeled monoclonal antibody indium 111-labeled CYT-356 localizes extraprostatic recurrent carcinoma after prostatectomy. Urology. 1998;51:978–84.

    Article  PubMed  CAS  Google Scholar 

  111. Burgers JK, Hinkle GH, Haseman MK. Monoclonal antibody imaging of recurrent and metastatic prostate cancer. Semin Urol. 1995;13:103–12.

    PubMed  CAS  Google Scholar 

  112. Thomas CT, Bradshaw PT, Pollock BH, et al. Indium-111-capromab pendetide radioimmunoscintigraphy and prognosis for durable biochemical response to salvage radiation therapy in men after failed prostatectomy. J Clin Oncol. 2003;21:1715–21.

    Article  PubMed  CAS  Google Scholar 

  113. Wilkinson S, Chodak G. The role of 111indium-capromab pendetide imaging for assessing biochemical failure after radical prostatectomy. J Urol. 2004;172:133–6.

    Article  PubMed  Google Scholar 

  114. Ellis RJ, Vertocnik A, Sodee B, et al. Combination conformal radiotherapy and radioimmunoguided transperineal 103Pd implantation for patients with intermediate and unfavorable risk prostate adenocarcinoma. Brachytherapy. 2003;2:215–22.

    Article  PubMed  Google Scholar 

  115. Ellis RJ, Vertocnik A, Kim E, et al. Four-year biochemical outcome after radioimmunoguided transperineal brachytherapy for patients with prostate adenocarcinoma. Int J Radiat Oncol Biol Phys. 2003;57:362–70.

    Article  PubMed  CAS  Google Scholar 

  116. Ellis RJ, Kim EY, Conant R, et al. Radioimmunoguided imaging of prostate cancer foci with histopathological correlation. Int J Radiat Oncol Biol Phys. 2001;49:1281–6.

    PubMed  CAS  Google Scholar 

  117. Heidenreich A, Ohlmann C, Polyakov S. Anatomical extent of pelvic lymphadenectomy in bladder and prostate cancer. Eur Urol Suppl. 2005;4:14–24.

    Google Scholar 

  118. Bader P, Burkhard FC, Markwalder R, Studer UE. Disease progression and survival of patients with positive lymph nodes after radical prostatectomy. Is there a chance of cure? J Urol. 2003;169:849–54.

    Google Scholar 

  119. Wawroschek F, Wagner T, Hamm M, et al. The influence of serial sections, immunohistochemistry, and extension of pelvic lymph node dissection on the lymph node status in clinically localized prostate cancer. Eur Urol. 2003;43:132–6; discussion 137.

    Article  PubMed  Google Scholar 

  120. Wawroschek F, Vogt H, Weckermann D, Wagner T, Hamm M, Harzmann R. Radioisotope guided pelvic lymph node dissection for prostate cancer. J Urol. 2001;166:1715–9.

    Article  PubMed  CAS  Google Scholar 

  121. Partin AW, Kattan MW, Subong EN, et al. Combination of prostate-specific antigen, clinical stage, and Gleason score to predict pathological stage of localized prostate cancer. A multi-institutional update. Jama. 1997;277:1445–51.

    Article  PubMed  CAS  Google Scholar 

  122. Crawford ED, Batuello JT, Snow P, et al. The use of artificial intelligence technology to predict lymph node spread in men with clinically localized prostate carcinoma. Cancer. 2000;88:2105–9.

    Article  PubMed  CAS  Google Scholar 

  123. Heidenreich A, Varga Z, Von Knobloch R. Extended pelvic lymphadenectomy in patients undergoing radical prostatectomy: high incidence of lymph node metastasis. J Urol. 2002;167:1681–6.

    Article  PubMed  Google Scholar 

  124. Weckermann D, Wawroschek F, Harzmann R. Is there a need for pelvic lymph node dissection in low risk prostate cancer patients prior to definitive local therapy? Eur Urol. 2005;47:45–50; discussion 50–41.

    Google Scholar 

  125. Messing EM, Manola J, Sarosdy M, Wilding G, Crawford ED, Trump D. Immediate hormonal therapy versus observation after radical prostatectomy and pelvic lymphadenectomy for node-positive prostate cancer: at 10 years results EST3886. J Clin Onc. 2004;22(14S):(Abstract 4570).

    Google Scholar 

  126. Messing EM, Manola J, Sarosdy M, Wilding G, Crawford ED, Trump D. Immediate hormonal therapy compared with observation after radical prostatectomy and pelvic lymphadenectomy in men with node-positive prostate cancer. N Engl J Med. 1999;341:1781–8.

    Article  PubMed  CAS  Google Scholar 

  127. Mann BG, Buchanan M, Collins PJ, Lichtenstein M. High incidence of micrometastases in breast cancer sentinel nodes. Aust N Z J Surg. 2000;70:786–90.

    Article  PubMed  CAS  Google Scholar 

  128. Kroon BK, Horenblas S, Nieweg OE. Contemporary management of penile squamous cell carcinoma. J Surg Oncol. 2005;89:43–50.

    Article  PubMed  Google Scholar 

  129. Borgognoni L, Urso C, Vaggelli L, Brandani P, Gerlini G, Reali UM. Sentinel node biopsy procedures with an analysis of recurrence patterns and prognosis in melanoma patients: technical advantages using computer-assisted gamma probe with adjustable collimation. Melanoma Res. 2004;14:311–9.

    Article  PubMed  Google Scholar 

  130. Wawroschek F, Vogt H, Weckermann D, Wagner T, Harzmann R. The sentinel lymph node concept in prostate cancer - first results of gamma probe-guided sentinel lymph node identification. Eur Urol. 1999;36:595–600.

    Article  PubMed  CAS  Google Scholar 

  131. Wawroschek F, Vogt H, Wengenmair H, et al. Prostate lymphoscintigraphy and radio-guided surgery for sentinel lymph node identification in prostate cancer. Technique and results of the first 350 cases. Urol Int. 2003;70:303–10.

    Article  PubMed  Google Scholar 

  132. Bastide C, Brenot-Rossi I, Garcia S, et al. [Feasibility and value of the isotope sentinel node mapping technique in prostate cancer]. Prog Urol. 2004;14:501–6.

    PubMed  Google Scholar 

  133. Takashima H, Egawa M, Imao T, Fukuda M, Yokoyama K, Namiki M. Validity of sentinel lymph node concept for patients with prostate cancer. J Urol. 2004;171:2268–71.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Lawrentschuck, N., Scott, A., Bolton, D. (2009). Prostate Carcinoma: Radionuclide Imaging and PET. In: de la Rosette, J.J., Manyak, M.J., Harisinghani, M.G., Wijkstra, H. (eds) Imaging in Oncological Urology. Springer, London. https://doi.org/10.1007/978-1-84628-759-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-759-6_23

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-514-1

  • Online ISBN: 978-1-84628-759-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics