Skip to main content

Prostate Carcinoma – Cross-Sectional Imaging Techniques

  • Chapter
Book cover Imaging in Oncological Urology
  • 1356 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jemal A, Murray T, Ward E, et al. Cancer statistics. CA Cancer J Clin. 2008;58:71–96.

    Article  PubMed  Google Scholar 

  2. American Cancer Society. Cancer facts and figures. Report No.: 5008.04. Atlanta, Ga: American Cancer Society; 2004.

    Google Scholar 

  3. Amling CL, Blute ML, Lerner SE, et al. Influence of prostate-specific antigen testing on the spectrum of patients with prostate cancer undergoing radical prostatectomy at a large referral practice. Mayo Clin Proc. 1998;73:401–6.

    Article  PubMed  CAS  Google Scholar 

  4. Stamey TA, Sozen TS, Yemoto CM, et al. Classification of localized untreated prostate cancer based on 791 men treated only with radical prostatectomy: common ground for therapeutic trials and TNM subgroups. J Urol. 1998;159:2009–12.

    Article  PubMed  CAS  Google Scholar 

  5. Stephenson RA, Stanford JL. Population-based prostate cancer trends in the United States: patterns of change in the era of prostate-specific antigen. World J Urol. 1997;15:331–5.

    Article  PubMed  CAS  Google Scholar 

  6. Kaminski JM, Hanlon AL, Horwitz EM, et al. Relationship between prostate volume, prostate-specific antigen nadir, and biochemical control. Int J Radiat Oncol Biol Phys. 2002;52:888–92.

    PubMed  Google Scholar 

  7. Zelefsky MJ, Fuks Z, Hunt M, et al. High dose radiation delivered by intensity modulated conformal radiotherapy improves the outcome of localized prostate cancer. J Urol. 2001;166:876–81.

    Article  PubMed  CAS  Google Scholar 

  8. Kattan MW, Eastham JA, Stapleton AM, et al. A preoperative nomogram for disease recurrence following radical prostatectomy for prostate cancer. J Natl Cancer Inst. 1998;90:766–71.

    Article  PubMed  CAS  Google Scholar 

  9. Pound CR, Partin AW, Eisenberger MA, et al. Natural history of progression after PSA elevation following radical prostatectomy. Jama. 1999;281:1591–7.

    Article  PubMed  CAS  Google Scholar 

  10. Platt JF, Bree RL, Schwab RE. The accuracy of CT in the staging of carcinoma of the prostate. AJR Am J Roentgenol. 1987;149:315–8.

    PubMed  CAS  Google Scholar 

  11. Engeler CE, Wasserman NF, Zhang G. Preoperative assessment of prostatic carcinoma by computerized tomography. Weaknesses and new perspectives. Urology. 1992;40:346–50.

    CAS  Google Scholar 

  12. Wolf JS, Jr., Cher M, Dall’era M, et al. The use and accuracy of cross-sectional imaging and fine needle aspiration cytology for detection of pelvic lymph node metastases before radical prostatectomy. J Urol. 1995;153(3 Pt 2):993–9.

    Article  PubMed  Google Scholar 

  13. Thompson I, Thrasher J, Aus G, et al. Guideline for the management of clinically localized prostate cancer. J Urol. 2007;177:2106–31.

    Article  PubMed  Google Scholar 

  14. Flocks R, Culp D, Porto R. Lymphatic spread from prostate cancer. J Urol. 1959;81:194–6.

    PubMed  CAS  Google Scholar 

  15. Coakley FV, Lin RY, Schwartz LH, et al. Mesenteric adenopathy in patients with prostate cancer: frequency and etiology. AJR Am J Roentgenol. 2002;178:125–7.

    PubMed  Google Scholar 

  16. Spencer JA, Golding SJ. Patterns of lymphatic metastases at recurrence of prostate cancer: CT findings. Clin Radiol. 1994;49:404–7.

    Article  PubMed  CAS  Google Scholar 

  17. Tiguert R, Gheiler EL, Tefilli MV, et al. Lymph node size does not correlate with the presence of prostate cancer metastasis. Urology. 1999;53:367–71.

    Article  PubMed  CAS  Google Scholar 

  18. Walsh JW, Amendola MA, Konerding KF, et al. Computed tomographic detection of pelvic and inguinal lymph-node metastases from primary and recurrent pelvic malignant disease. Radiology. 1980;137(1 Pt 1):157–66.

    PubMed  CAS  Google Scholar 

  19. Rorvik J, Halvorsen OJ, Albrektsen G, et al. Lymphangiography combined with biopsy and computer tomography to detect lymph node metastases in localized prostate cancer. Scand J Urol Nephrol. 1998;32:116–9.

    Article  PubMed  CAS  Google Scholar 

  20. Oyen RH, Van Poppel HP, Ameye FE, et al. Lymph node staging of localized prostatic carcinoma with CT and CT-guidedfine-needle aspiration biopsy: prospective study of 285 patients. Radiology. 1994;190:315–22.

    PubMed  CAS  Google Scholar 

  21. Taoka T, Mayr NA, Lee HJ, et al. Factors influencing visualization of vertebral metastases on MR imaging versus bone scintigraphy. AJR Am J Roentgenol. 2001;176:1525–30.

    PubMed  CAS  Google Scholar 

  22. Traill ZC, Talbot D, Golding S, et al. Magnetic resonance imaging versus radionuclide scintigraphy in screening for bone metastases. Clin Radiol. 1999;54:448–51.

    Article  PubMed  CAS  Google Scholar 

  23. Beyersdorff D, Taupitz M, Winkelmann B, et al. Patients with a history of elevated prostate-specific antigen levels and negative transrectal US-guided quadrant or sextant biopsy results: value of MR imaging. Radiology. 2002;224:701–6.

    Article  PubMed  Google Scholar 

  24. Zakian KL, Eberhardt S, Hricak H, et al. Transition zone prostate cancer: metabolic characteristics at 1H MR spectroscopicimaging – initial results. Radiology. 2003;229:241–7.

    Article  PubMed  Google Scholar 

  25. Claus FG, Hricak H, Hattery RR. Pretreatment Evaluation of Prostate Cancer: Role of MR Imaging and 1H MR Spectroscopy. Radiographics. 2004;24 Suppl 1:S167–80.

    Article  PubMed  Google Scholar 

  26. Hricak H, Schoder H, Pucar D, et al. Advances in imaging in the postoperative patient with a rising prostate-specific antigen level. Semin Oncol. 2003;30:616–34.

    Article  PubMed  Google Scholar 

  27. Futterer JJ, Scheenen TW, Huisman HJ, et al. Initial experience of 3 tesla endorectal coil magnetic resonance imaging and 1H-spectroscopic imaging of the prostate. Invest Radiol. 2004;39:671–80.

    Article  PubMed  Google Scholar 

  28. Hricak H, White S, Vigneron D, et al. Carcinoma of the prostate gland: MR imaging with pelvic phased-array coils versus integrated endorectal–pelvic phased-array coils. Radiology. 1994;193:703–9.

    PubMed  CAS  Google Scholar 

  29. Coakley FV, Qayyum A, Kurhanewicz J. Magnetic resonance imaging and spectroscopic imaging of prostate cancer. J Urol. 2003;170(6 Pt 2):S69–75;discussion S-6.

    Article  PubMed  Google Scholar 

  30. Rouviere O, Raudrant A, Ecochard R, et al. Characterization of time-enhancement curves of benign and malignant prostate tissue at dynamic MR imaging. Eur Radiol. 2003;13:931–42.

    PubMed  Google Scholar 

  31. Preziosi P, Orlacchio A, Di Giambattista G, et al. Enhancement patterns of prostate cancer in dynamic MRI. Eur Radiol. 2003;13:925–30.

    PubMed  Google Scholar 

  32. Oyen RH. Dynamic contrast-enhanced MRI of the prostate: is this the way to proceed for characterization of prostatic carcinoma? Eur Radiol. 2003;13:921–4.

    Google Scholar 

  33. Jager GJ, Ruijter ET, van de Kaa CA, et al. Dynamic TurboFLASH subtraction technique for contrast-enhanced MRimaging of the prostate: correlation with histopathologic results. Radiology. 1997;203:645–52.

    PubMed  CAS  Google Scholar 

  34. Barentsz JO, Engelbrecht M, Jager GJ, et al. Fast dynamic gadolinium-enhanced MR imaging of urinary bladder and prostate cancer. J Magn Reson Imaging. 1999;10(3):295–304.

    Article  PubMed  CAS  Google Scholar 

  35. Padhani AR. Dynamic contrast-enhanced MRI in clinical oncology: current status and future directions. J Magn Reson Imaging. 2002;16:407–22.

    Article  PubMed  Google Scholar 

  36. Padhani AR, Dzik-Jurasz A. Perfusion MR imaging of extracranial tumor angiogenesis. Top Magn Reson Imaging. 2004;15:41–57.

    Article  PubMed  Google Scholar 

  37. Padhani AR, Hayes C, Landau S, Leach MO. Reproducibility of quantitative dynamic MRI of normal human tissues. NMR Biomed. 2002;15(2):143–53.

    Article  PubMed  Google Scholar 

  38. Port RE, Knopp MV, Hoffmann U, et al. Multicompartment analysis of gadolinium chelate kinetics: blood-tissue exchange in mammary tumors as monitored by dynamic MR imaging. J Magn Reson Imaging. 1999;10:233–41.

    Article  PubMed  CAS  Google Scholar 

  39. Taylor JS, Tofts PS, Port R, et al. MR imaging of tumor microcirculation: promise for the new millennium. J Magn Reson Imaging. 1999;10:903–7.

    Article  PubMed  CAS  Google Scholar 

  40. Tofts PS, Brix G, Buckley DL, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging. 1999;10:223–32.

    Article  PubMed  CAS  Google Scholar 

  41. Hayes C, Padhani AR, Leach MO. Assessing changes in tumour vascular function using dynamic contrast-enhanced magnetic resonance imaging. NMR Biomed. 2002;15:154–63.

    Article  PubMed  Google Scholar 

  42. Evelhoch JL. Key factors in the acquisition of contrast kinetic data for oncology. J Magn Reson Imaging. 1999;10:254–9.

    Article  PubMed  CAS  Google Scholar 

  43. Brown TR, Kincaid BM, Ugurbil K. NMR chemical shift imaging in three dimensions. Proc Natl Acad Sci USA. 1982;79:3523–6.

    Article  PubMed  CAS  Google Scholar 

  44. Star-Lack J, Nelson SJ, Kurhanewicz J, et al. Improved water and lipid suppression for 3D PRESS CSI using RF band selective inversion with gradient dephasing (BASING). Magn Reson Med. 1997;38:311–21.

    Article  PubMed  CAS  Google Scholar 

  45. Kurhanewicz J, Swanson MG, Nelson SJ, et al. Combined magnetic resonance imaging and spectroscopic imaging approach to molecular imaging of prostate cancer. J Magn Reson Imaging. 2002;16:451–63.

    Article  PubMed  Google Scholar 

  46. Coakley FV, Hricak H. Radiologic anatomy of the prostate gland: a clinical approach. Radiol Clin North Am. 2000;38:15–30.

    Article  PubMed  CAS  Google Scholar 

  47. Hricak H, Dooms GC, McNeal JE, et al. MR imaging of the prostate gland: normal anatomy. AJR Am J Roentgenol. 1987;148:51–8.

    PubMed  CAS  Google Scholar 

  48. Noguchi M, Stamey TA, Neal JE, et al. An analysis of 148 consecutive transition zone cancers: clinical and histological characteristics. J Urol. 2000;163:1751–5.

    Article  PubMed  CAS  Google Scholar 

  49. Gelet A, Chapelon JY, Bouvier R, et al. Transrectal high intensity focused ultrasound for the treatment of localized prostate cancer: factors influencing the outcome. Eur Urol. 2001;40:124–9.

    Article  PubMed  CAS  Google Scholar 

  50. Parivar F, Hricak H, Shinohara K, et al. Detection of locally recurrent prostate cancer after cryosurgery: evaluation by transrectal ultrasound, magnetic resonance imaging, and three-dimensional proton magnetic resonance spectroscopy. Urology. 1996;48:594–9.

    Article  PubMed  CAS  Google Scholar 

  51. Perrotti M, Han KR, Epstein RE, et al. Prospective evaluation of endorectal magnetic resonance imaging to detect tumor foci in men with prior negative prostastic biopsy: a pilot study. J Urol. 1999;162:1314–7.

    Article  PubMed  CAS  Google Scholar 

  52. Lui PD, Terris MK, McNeal JE, et al. Indications for ultrasound guided transition zone biopsies in the detection of prostate cancer. J Urol. 1995;153(3 Pt 2):1000–3.

    PubMed  CAS  Google Scholar 

  53. Fleshner NE, Fair WR. Indications for transition zone biopsy in the detection of prostatic carcinoma. J Urol. 1997;157:556–8.

    Article  PubMed  CAS  Google Scholar 

  54. Sommer FG, Nghiem HV, Herfkens R, et al. Determining the volume of prostatic carcinoma: value of MR imaging with an external-array coil. AJR Am J Roentgenol. 1993;161:81–6.

    PubMed  CAS  Google Scholar 

  55. Akin O, Sala E, Moskowitz CS, et al. Transition zone prostate cancers: detection, localization, local staging and feature analysis with endorectal MR imaging. Radiology. 2006;239:784–92.

    Article  PubMed  Google Scholar 

  56. Engelbrecht MR, Huisman HJ, Laheij RJ, et al. Discrimination of prostate cancer from normal peripheral zone and central gland tissue by using dynamic contrast-enhanced MR imaging. Radiology. 2003;229:248–54.

    Article  PubMed  Google Scholar 

  57. van Dorsten FA, van der Graaf M, Engelbrecht MR, et al. Combined quantitative dynamic contrast-enhanced MR imaging and (1)H MR spectroscopic imaging of human prostate cancer. J Magn Reson Imaging. 2004;20:279–87.

    Google Scholar 

  58. Ogura K, Maekawa S, Okubo K, et al. Dynamic endorectal magnetic resonance imaging for local staging and detection of neurovascular bundle involvement of prostate cancer: correlation with histopathologic results. Urology. 2001;57:721–6.

    Article  PubMed  CAS  Google Scholar 

  59. Engelbrecht MR, Jager GJ, Laheij RJ, et al. Local staging of prostate cancer using magnetic resonance imaging: a meta-analysis. Eur Radiol. 2002;12:2294–302.

    PubMed  Google Scholar 

  60. Hosseinzadeh K, Schwarz SD. Endorectal diffusion-weighted imaging in prostate cancer to differentiate malignant and benign peripheral zone tissue. J Magn Reson Imaging. 2004;20:654–61.

    Article  PubMed  Google Scholar 

  61. Issa B. In vivo measurement of the apparent diffusion coefficient in normal and malignant prostatic tissues using echo-planar imaging. J Magn Reson Imaging. 2002;16:196–200.

    Article  PubMed  Google Scholar 

  62. Schiebler ML, Schnall MD, Pollack HM, et al. Current role of MR imaging in the staging of adenocarcinoma of the prostate. Radiology. 1993;189:339–52.

    PubMed  CAS  Google Scholar 

  63. Kurhanewicz J, Vigneron DB, Hricak H, et al. Three-dimensional H-1 MR spectroscopic imaging of the in situ human prostate with high (0.24–0.7-cm3) spatial resolution. Radiology. 1996;198:795–805.

    PubMed  CAS  Google Scholar 

  64. Heerschap A, Jager GJ, van der Graaf M, et al. Proton MR spectroscopy of the normal human prostate with an endorectal coil and a double spin-echo pulse sequence. Magn Reson Med. 1997;37:204–13.

    Article  PubMed  CAS  Google Scholar 

  65. Coakley FV, Kurhanewicz J, Lu Y, et al. Prostate cancer tumor volume: measurement with endorectal MR and MR spectroscopic imaging. Radiology. 2002;223:91–7.

    Article  PubMed  Google Scholar 

  66. Kurhanewicz J, Vigneron DB, Males RG, et al. The prostate: MR imaging and spectroscopy. Present and future. Radiol Clin North Am. 2000;38:115–38, viii–ix.

    Article  CAS  Google Scholar 

  67. Costello LC, Franklin RB. Citrate metabolism of normal and malignant prostate epithelial cells. Urology. 1997;50:3–12.

    Article  PubMed  CAS  Google Scholar 

  68. Kurhanewicz J, Dahiya R, Macdonald JM, et al. Citrate alterations in primary and metastatic human prostatic adenocarcinomas: 1H magnetic resonance spectroscopy and biochemical study. Magn Reson Med. 1993;29:149–57.

    Article  PubMed  CAS  Google Scholar 

  69. Kurhanewicz J, Vigneron DB, Nelson SJ, et al. Citrate as an in vivo marker to discriminate prostate cancer from benign prostatic hyperplasia and normal prostate peripheral zone: detection via localized proton spectroscopy. Urology. 1995;45:459–66.

    Article  PubMed  CAS  Google Scholar 

  70. Liney GP, Turnbull LW, Lowry M, et al. In vivo quantification of citrate concentration and water T2 relaxation time of the pathologic prostate gland using 1H MRS and MRI. Magn Reson Imaging. 1997;15:1177–86.

    Article  PubMed  CAS  Google Scholar 

  71. Sijens PE, Knopp MV, Brunetti A, et al. 1H MR spectroscopy in patients with metastatic brain tumors: a multicenter study. Magn Reson Med. 1995;33:818–26.

    Article  PubMed  CAS  Google Scholar 

  72. Koutcher JA, Ballon D, Graham M, et al. 31P NMR spectra of extremity sarcomas: diversity of metabolic profiles and changes in response to chemotherapy. Magn Reson Med. 1990;16:19–34.

    Article  PubMed  CAS  Google Scholar 

  73. Heerschap A, Jager GJ, van der Graaf M, et al. In vivo proton MR spectroscopy reveals altered metabolite content in malignant prostate tissue. Anticancer Res. 1997;17:1455–60.

    PubMed  CAS  Google Scholar 

  74. Fulham MJ, Bizzi A, Dietz MJ, et al. Mapping of brain tumor metabolites with proton MR spectroscopic imaging: clinical relevance. Radiology. 1992;185:675–86.

    PubMed  CAS  Google Scholar 

  75. Wefer AE, Hricak H, Vigneron DB, et al. Sextant localization of prostate cancer: comparison of sextant biopsy, magnetic resonance imaging and magnetic resonance spectroscopic imaging with step section histology. J Urol. 2000;164:400–4.

    Article  PubMed  CAS  Google Scholar 

  76. Scheidler J, Hricak H, Vigneron DB, et al. Prostate cancer: localization with three-dimensional proton MR spectroscopic imaging – clinicopathologic study. Radiology. 1999;213:473–80.

    PubMed  CAS  Google Scholar 

  77. Zakian KL, Sircar K, Hricak H, et al. Correlation of proton MR spectroscopic imaging with gleason score based on step-section pathologic analysis after radical prostatectomy. Radiology. 2005;234:804–14.

    Article  PubMed  Google Scholar 

  78. Kaji Y, Kurhanewicz J, Hricak H, et al. Localizing prostate cancer in the presence of postbiopsy changes on MR images: role of proton MR spectroscopic imaging. Radiology. 1998;206:785–90.

    PubMed  CAS  Google Scholar 

  79. Males RG, Vigneron DB, Star-Lack J, et al. Clinical application of BASING and spectral/spatial water and lipid suppression pulses for prostate cancer staging and localization by in vivo 3D 1H magnetic resonance spectroscopic imaging. Magn Reson Med. 2000;43:17–22.

    Article  PubMed  CAS  Google Scholar 

  80. Swanson MG, Vigneron DB, Tabatabai ZL, et al. Proton HR-MAS spectroscopy and quantitative pathologic analysis of MRI/3D-MRSI-targeted postsurgical prostate tissues. Magn Reson Med. 2003;50:944–54.

    Article  PubMed  CAS  Google Scholar 

  81. Yuen JS, Thng CH, Tan PH, et al. Endorectal magnetic resonance imaging and spectroscopy for the detection of tumor foci in men with prior negative transrectal ultrasound prostate biopsy. J Urol. 2004;171:1482–6.

    Article  PubMed  CAS  Google Scholar 

  82. Obek C, Louis P, Civantos F, et al. Comparison of digital rectal examination and biopsy results with the radical prostatectomy specimen. J Urol. 1999;161:494–8;discussion 8–9.

    Article  PubMed  CAS  Google Scholar 

  83. Salomon L, Colombel M, Patard JJ, et al. Value of ultrasound-guided systematic sextant biopsies in prostate tumor mapping. Eur Urol. 1999;35:289–93.

    Article  PubMed  CAS  Google Scholar 

  84. Mullerad M, Hricak H, Kuroiwa K, et al. Comparison of endorectal magnetic resonance imaging, guided prostate biopsy and digital rectal examination in the preoperative anatomical localization of prostate cancer. J Urol. 2005;174:2158–63.

    Article  PubMed  Google Scholar 

  85. Kattan MW, Eastham JA, Wheeler TM, et al. Counseling men with prostate cancer: a nomogram for predicting the presence of small, moderately differentiated, confined tumors. J Urol. 2003;170:1792–7.

    Article  PubMed  Google Scholar 

  86. Shukla-Dave A, Hricak H, Pucar D, et al. Indolent prostate cancer-prediction by magnetic resonance imaging and spectroscopy [abstract]. Proc Intl Soc Magn Reson Med. 2005; abstract no. 262.

    Google Scholar 

  87. Padhani AR, Gapinski CJ, Macvicar DA, et al. Dynamic contrast enhanced MRI of prostate cancer: correlation with morphology and tumour stage, histological grade and PSA. Clin Radiol. 2000;55:99–109.

    Article  PubMed  CAS  Google Scholar 

  88. Greene FL, Page DL, Fleming ID, et al. (editors). AJCC cancer staging manual. 6th ed. New York: Springer; 2002. pp. 309–16.

    Google Scholar 

  89. D’Amico AV, Whittington R, Malkowicz B, et al. Endorectal magnetic resonance imaging as a predictor of biochemical outcome after radical prostatectomy in men with clinically localized prostate cancer. J Urol. 2000;164(3 Pt 1):759–63.

    PubMed  CAS  Google Scholar 

  90. Jager GJ, Severens JL, Thornbury JR, et al. Prostate cancer staging: should MR imaging be used? – A decision analytic approach. Radiology. 2000;215:445–51.

    PubMed  CAS  Google Scholar 

  91. Yu KK, Scheidler J, Hricak H, et al. Prostate cancer: prediction of extracapsular extension with endorectal MR imaging and three-dimensional proton MR spectroscopic imaging. Radiology. 1999;213:481–8.

    PubMed  CAS  Google Scholar 

  92. Huch Boni RA, Boner JA, Debatin JF, et al. Optimization of prostate carcinoma staging: comparison of imaging and clinical methods. Clin Radiol. 1995;50:593–600.

    Article  PubMed  CAS  Google Scholar 

  93. Wang L, Mullerad M, Chen HN, et al. Prostate cancer: incremental value of endorectal MR imaging findings for prediction of extracapsular extension. Radiology. 2004;232:133–9.

    Article  PubMed  Google Scholar 

  94. Yu KK, Hricak H, Alagappan R, et al. Detection of extracapsular extension of prostate carcinoma with endorectal and phased-array coil MR imaging: multivariate feature analysis. Radiology. 1997;202:697–702.

    PubMed  CAS  Google Scholar 

  95. Mullerad M, Hricak H, Wang L, et al. Prostate cancer: detection of extracapsular extension by genitourinary and general body radiologists at MR imaging. Radiology. 2004;232:140–6.

    Article  PubMed  Google Scholar 

  96. Hull GW, Rabbani F, Abbas F, et al. Cancer control with radical prostatectomy alone in 1,000 consecutive patients. J Urol. 2002;167(2 Pt 1):528–34.

    PubMed  Google Scholar 

  97. Catalona WJ, Ramos CG, Carvalhal GF. Contemporary results of anatomic radical prostatectomy. CA Cancer J Clin. 1999;49:282–96.

    Article  PubMed  CAS  Google Scholar 

  98. Bernstein MR, Cangiano T, D’Amico A, et al. Endorectal coil magnetic resonance imaging and clinicopathologic findings in T1c adenocarcinoma of the prostate. 2000;5:104–7.

    Google Scholar 

  99. Wang L, Hricak H, Eberhardt S, et al. Prostate cancer – value of 3D endorectal MR imaging in the evaluation of seminal vesicle invasion in patients treated by radical prostatectomy. AJR Am J Roentgenol. 2004;182 Suppl 4: S67.

    Google Scholar 

  100. Naya Y, Fritsche HA, Cheli CD, et al. Volume indexes of total, free, and complexed prostate-specific antigen enhance prediction of extraprostatic disease extension in men with nonpalpable prostate cancer. Urology. 2003;62:1058–62.

    Article  PubMed  Google Scholar 

  101. Wymenga LF, Boomsma JH, Groenier K, et al. Routine bone scans in patients with prostate cancer related to serum prostate-specific antigen and alkaline phosphatase. BJU Int. 2001;88:226–30.

    Article  PubMed  CAS  Google Scholar 

  102. Wang L, Hricak H, Kattan MW, et al. Combined Endorectal and Phased Array MRI in the Prediction of Pelvic Lymph NodeMetastasis in Prostate Cancer. AJR Am J Roentgenol. 2006;186:743–8.

    Article  PubMed  Google Scholar 

  103. Bellin MF, Roy C, Kinkel K, et al. Lymph node metastases: safety and effectiveness of MR imaging with ultrasmall superparamagnetic iron oxide particles–initial clinical experience. Radiology. 1998;207:799–808.

    PubMed  CAS  Google Scholar 

  104. Harisinghani MG, Barentsz J, Hahn PF, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med. 2003;348:2491–9.

    Article  PubMed  Google Scholar 

  105. Hovels AM, Heesakkers RA, Adang EM, et al. Cost-analysis of staging methods for lymph nodes in patients with prostate cancer: MRI with a lymph node-specific contrast agent compared to pelvic lymph node dissection or CT. Eur Radiol. 2004;14:1707–12.

    Article  PubMed  Google Scholar 

  106. Algra PR, Bloem JL, Tissing H, et al. Detection of vertebral metastases: comparison between MR imaging and bone scintigraphy. Radiographics. 1991;11:219–32.

    PubMed  CAS  Google Scholar 

  107. Turner JW, Hawes DR, Williams RD. Magnetic resonance imaging for detection of prostate cancer metastatic to bone. J Urol. 1993;149:1482–4.

    PubMed  CAS  Google Scholar 

  108. Barkhausen J, Quick HH, Lauenstein T, et al. Whole-body MR imaging in 30 seconds with real-time true FISP and a continuously rolling table platform: feasibility study. Radiology. 2001;220:252–6.

    PubMed  CAS  Google Scholar 

  109. Lauenstein TC, Freudenberg LS, Goehde SC, et al. Whole-body MRI using a rolling table platform for the detection of bone metastases. Eur Radiol. 2002;12:2091–9.

    PubMed  Google Scholar 

  110. Lauenstein TC, Goehde SC, Herborn CU, et al. Whole-body MR imaging: evaluation of patients for metastases. Radiology. 2004;233:139–48.

    Article  PubMed  Google Scholar 

  111. Lauenstein TC, Goehde SC, Herborn CU, et al. Three-dimensional volumetric interpolated breath-hold MR imaging for whole-body tumor staging in less than 15 minutes: a feasibility study. AJR Am J Roentgenol. 2002;179:445–9.

    PubMed  Google Scholar 

  112. Silverman JM, Krebs TL. MR imaging evaluation with a transrectal surface coil of local recurrence of prostatic cancer in men who have undergone radical prostatectomy. AJR Am J Roentgenol. 1997;168:379–85.

    PubMed  CAS  Google Scholar 

  113. Sella T, Schwartz LH, Swindle PW, et al. Suspected local recurrence after radical prostatectomy: endorectal coil MR imaging. Radiology. 2004;231:379–85.

    Article  PubMed  Google Scholar 

  114. Sella T, Schwartz LH, Hricak H. Retained seminal vesicles following radical prostatectomy – frequency, MRI characteristics and clinical relevance. AJR Am J Roentgenol. 2006;186:539–46.

    Article  PubMed  Google Scholar 

  115. Nudell DM, Wefer AE, Hricak H, et al. Imaging for recurrent prostate cancer. Radiol Clin North Am. 2000;38:213–29.

    Article  PubMed  CAS  Google Scholar 

  116. Sala E, Eberhardt SC, Akin O, et al. Endorectal MR imaging prior to salvage prostatectomy: tumor localization and staging. Radiology. 2006;238:176–83.

    Article  PubMed  Google Scholar 

  117. Coakley FV, Teh HS, Qayyum A, et al. Endorectal MR imaging and MR spectroscopic imaging for locally recurrent prostate cancer after external beam radiation therapy: preliminary experience. Radiology. 2004;233:441–8.

    Article  PubMed  Google Scholar 

  118. Pucar D, Shukla-Dave A, Hricak H, et al. Prostate cancer: correlation of MR imaging and MR spectroscopy with pathologic findings after radiation therapy: initial experience. Radiology. 2005;236:545–53.

    Article  PubMed  Google Scholar 

  119. Kurhanewicz J, Vigneron DB, Hricak H, et al. Prostate cancer: metabolic response to cryosurgery as detected with 3D H-1 MR spectroscopic imaging. Radiology. 1996;200:489–96.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Sala, E., Hricak, H. (2009). Prostate Carcinoma – Cross-Sectional Imaging Techniques. In: de la Rosette, J.J., Manyak, M.J., Harisinghani, M.G., Wijkstra, H. (eds) Imaging in Oncological Urology. Springer, London. https://doi.org/10.1007/978-1-84628-759-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-759-6_22

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-514-1

  • Online ISBN: 978-1-84628-759-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics