Skip to main content

Genetic Metabolic Disease

  • Chapter

The terms inborn errors of metabolism, genetic metabolic disease, disorders of intermediary metabolism, and inherited metabolic disease are used interchangeably. For the sake of clarity, inborn errors of metabolism (IEMs) is used in this chapter. The common feature of these disorders is a genetically determined interruption in one (or several related) metabolic pathway. This results in clinical symptoms caused by deficiency of the pathway product or toxicity resulting from the accumulation of an intermediary compound (Fig. 7.1). Inborn errors of metabolism are mostly genetically recessive disorders with clinical symptoms rare in heterozygous individuals. The molecular pathology of IEMs usually involve homozygous (autosomal) or hemizygous (X-linked) loss of function mutations in genes encoding proteins with a single enzymatic function. This chapter catalogues the main modes of presentation of genetic metabolic disease during fetal and neonatal life and currently available laboratory diagnostic tools. It should be noted that new phenotypes and diagnostic techniques are continually evolving and online services, such as the On-Line Men-delian Inheritance in Man (OMIM) (see Appendix 7.1), can be a very helpful adjunct to hardcopy reference texts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   419.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersson HC, Kratz L, Kelley R (2002) Desmosterolo-sis presenting with multiple congenital anomalies and profound developmental delay. Am J Med Genet 113:315–319.

    Article  PubMed  Google Scholar 

  • Applegarth DA, Toone JR (2001) Nonketotic hyper-glycinemia (glycine encephalopathy): laboratory diagnosis. Mol Genet Metab 74:139–146.

    Article  PubMed  CAS  Google Scholar 

  • Assmann B, Surtees R, Hoffmann GF (2003) Approach to the diagnosis of neurotransmitter diseases exem-plified by the differential diagnosis of childhood-onset dystonia. Ann Neurol 54(suppl 6):S18–24.

    Article  PubMed  CAS  Google Scholar 

  • Braverman N, Steel G, Obie C, et al. (1997) Human PEX7 encodes the peroxisomal PTS2 receptor and is responsible for rhizomelic chondrodysplasia punc-tata. Nat Genet 15:369–376.

    Article  PubMed  CAS  Google Scholar 

  • Brites P, Motley A, Hogenhout E, et al. (1998) Molecular basis of rhizomelic chondrodysplasia punctata type I: high frequency of the Leu-292 stop mutation in 38 patients. J Inherit Metab Dis 21:306–308.

    Article  PubMed  CAS  Google Scholar 

  • Brown GK (1994) Metabolic disorders of embryo-genesis. J Inherit Metab Dis 17:448–458.

    Article  PubMed  CAS  Google Scholar 

  • Cipcic-Schmidt S, Trefz FK, Funders B, Seidlitz G, Ullrich K (1996) German Maternal Phenylketonuria Study. Eur J Pediatr 155(suppl 1):S173–176.

    Google Scholar 

  • Clayton PT (2002) Inborn errors presenting with liver dysfunction. Semin Neonatol 7:49–63.

    Article  PubMed  Google Scholar 

  • Dimauro S, Gurgel-Giannetti J (2005) The expanding phenotype of mitochondrial myopathy. Curr Opin Neurol 18:538–542.

    Article  PubMed  CAS  Google Scholar 

  • FitzPatrick DR (1996) Zellweger syndrome and associated phenotypes. J Med Genet 33:863–868.

    Article  PubMed  CAS  Google Scholar 

  • Gasch AT, Caruso RC, Kaler SG, Kaiser-Kupfer M (2002) Menkes' syndrome: ophthalmic findings. Ophthalmology 109:1477–1483.

    Article  PubMed  Google Scholar 

  • Gehrmann J, Sohlbach K, Linnebank M, et al. (2003) Cardiomyopathy in congenital disorders of glycosyl-ation. Cardiol Young 13:345–351.

    PubMed  Google Scholar 

  • Goldfischer S, Collins J, Rapin I, Neumann P, Neglia W, Spiro AJ, Ishii T, Roels F, Vamecq J, Van Hoof F. Pseudo-Zellweger syndrome: deficiencies in several peroxisomal oxidative activities. J Pediatr 1986;108:25–32.

    Article  PubMed  CAS  Google Scholar 

  • Gray RG, Green A (1994) Diagnosis and management of non-immune hydrops in the newborn. Arch Dis Child 71:F148–149.

    PubMed  CAS  Google Scholar 

  • Hoffmann GF, Surtees RA, Wevers RA (1998) Cere-brospinal fluid investigations for neurometabolic disorders. Neuropediatrics 29:59–71.

    Article  PubMed  CAS  Google Scholar 

  • Hoover-Fong JE, Shah S, Van Hove JL, Applegarth D, Toone J, Hamosh A (2004) Natural history of non-ketotic hyperglycinemia in 65 patients. Neurology 63:1847–1853.

    PubMed  CAS  Google Scholar 

  • Horster F, Hoffmann GF (2004) Pathophysiology, diagnosis, and treatment of methylmalonic aciduria-recent advances and new challenges. Pediatr Nephrol 19:1071–1074.

    Article  PubMed  Google Scholar 

  • Kaler SG (1998a) Diagnosis and therapy of Menkes syndrome, a genetic form of copper deficiency. Am J Clin Nutr 67:1029S–1034S.

    CAS  Google Scholar 

  • Kaler SG (1998b) Metabolic and molecular bases of Menkes disease and occipital horn syndrome. Pediatr Dev Pathol 1:85–98.

    Article  CAS  Google Scholar 

  • Kronick JB, Scriver CR, Goodyer PR, Kaplan PB (1983) A perimortem protocol for suspected genetic disease. Pediatrics 71:960–963.

    PubMed  CAS  Google Scholar 

  • Levy HL (1996) Reproductive effects of maternal metabolic disorders: implications for pediatrics and obstetrics. Turk J Pediatr 38:335–344.

    PubMed  CAS  Google Scholar 

  • Nissenkorn A, Michelson M, Ben-Zeev B, Lerman-Sagie T (2001) Inborn errors of metabolism: a cause of abnormal brain development. Neurology 56:1265– 1272.

    PubMed  CAS  Google Scholar 

  • Ogier de Baulny H, Saudubray JM (2002) Branched-chain organic acidurias. Semin Neonatol 7:65– 74.

    Article  PubMed  CAS  Google Scholar 

  • Olpin SE (2004) The metabolic investigation of sudden infant death. Ann Clin Biochem 41:282–293.

    Article  PubMed  CAS  Google Scholar 

  • Porter FD (2003) Human malformation syndromes due to inborn errors of cholesterol synthesis. Curr Opin Pediatr 15:607–613.

    Article  PubMed  Google Scholar 

  • Preece MA, Green A (2002) Pregnancy and inherited metabolic disorders: maternal and fetal complications. Ann Clin Biochem 39:444–455.

    Article  PubMed  CAS  Google Scholar 

  • Roe CR, Sweetman L, Roe DS, David F, Brunengraber H (2002) Treatment of cardiomyopathy and rhabdo-myolysis in long-chain fat oxidation disorders using an anaplerotic odd-chain triglyceride. J Clin Invest 110:259–269.

    PubMed  CAS  Google Scholar 

  • Saudubray JM, Nassogne MC, de Lonlay P, Touati G (2002) Clinical approach to inherited metabolic disorders in neonates: an overview. Semin Neonatol 7:3–15.

    Article  PubMed  CAS  Google Scholar 

  • Saudubray JM, Ogier H, Bonnefont JP, et al. (1989) Clinical approach to inherited metabolic diseases in the neonatal period: a 20-year survey. J Inherit Metab Dis 12(suppl 1):25–41.

    Article  PubMed  Google Scholar 

  • Schmaltz AA (2001) [Dilated cardiomyopathy in childhood]. Z Kardiol 90:263–268.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz ML, Cox GF, Lin AE, et al. (1996) Clinical approach to genetic cardiomyopathy in children. Circulation 94:2021–2038.

    PubMed  CAS  Google Scholar 

  • Shimozawa N, Nagase T, Takemoto Y, Funato M, Kondo N, Suzuki Y (2005) Molecular and neurologic find-ings of peroxisome biogenesis disorders. J Child Neurol 20:326–329.

    Article  PubMed  Google Scholar 

  • Sims HF, Brackett JC, Powell CK, et al. (1995) The molecular basis of pediatric long chain 3–hydroxy-acyl-CoA dehydrogenase deficiency associated with maternal acute fatty liver of pregnancy. Proc Natl Acad Sci U S A 92:841–845.

    Article  PubMed  CAS  Google Scholar 

  • Smeitink JA (2003) Mitochondrial disorders: clinical presentation and diagnostic dilemmas. J Inherit Metab Dis 26:199–207.

    Article  PubMed  CAS  Google Scholar 

  • Stone DL, Sidransky E (1999) Hydrops fetalis: lyso-somal storage disorders in extremis. Adv Pediatr 46:409–440.

    PubMed  CAS  Google Scholar 

  • Stromberger C, Bodamer OA, Stockler-Ipsiroglu S (2003) Clinical characteristics and diagnostic clues in inborn errors of creatine metabolism. J Inherit Metab Dis 26:299–308.

    Article  PubMed  CAS  Google Scholar 

  • Surtees R (1999) Inborn errors of neurotransmitter receptors. J Inherit Metab Dis 22:374–380.

    Article  PubMed  CAS  Google Scholar 

  • Van Maldergem L, Jauniaux E, Fourneau C, Gillerot Y (1992) Genetic causes of hydrops fetalis. Pediatrics 89:81–86.

    PubMed  Google Scholar 

  • Wanders RJ, Waterham HR (2005) Peroxisomal disorders I: biochemistry and genetics of peroxisome biogenesis disorders. Clin Genet 67:107–133.

    Article  PubMed  CAS  Google Scholar 

  • Waterham HR, Koster J, Romeijn GJ, et al. (2001) Mutations in the 3beta-hydroxysterol Delta24–reductase gene cause desmosterolosis, an autosomal recessive disorder of cholesterol biosynthesis. Am J Hum Genet 69:685–694.

    Article  PubMed  CAS  Google Scholar 

  • Zeviani M, Spinazzola A (2003) Mitochondrial disorders. Curr Neurol Neurosci Rep 3:423–432.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

FitzPatrick, D.R. (2007). Genetic Metabolic Disease. In: Keeling, J.W., Khong, T.Y. (eds) Fetal and Neonatal Pathology. Springer, London. https://doi.org/10.1007/978-1-84628-743-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-743-5_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-524-0

  • Online ISBN: 978-1-84628-743-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics