Skip to main content

Introduction to Echocardiography

  • Chapter
Cardiovascular Medicine

Abstract

  • Echocardiography is a safe, noninvasive, and widely available method that often provides a definitive anatomic and hemodynamic diagnosis and guides medical management.

  • Although long viewed as clinically “mature,” echocardiography has undergone further “revolutionary” advances during the past 10 years, including not only technologic breakthroughs but also new clinical applications for older techniques.

  • The recent explosion of potential “add-on” techniques presents echocardiographers with challenging questions about what constitutes real clinical progress and what techniques should be incorporated into the standard examination protocol. By becoming familiar with their clinical indications, echocardiographers can use these techniques selectively, on an “as-needed” basis, and thus streamline patient care.

  • Because of increased availability and clinical utility, echocardiography’s usage has greatly expanded in recent years. However, echocardiography demands a major commitment in terms of time, personnel, ongoing training, and technology.

  • An understanding of the physics of ultrasound is essential for performing echocardiography examinations and interpreting their results.

  • A comprehensive transthoracic echocardiography examination includes systematic acquisition of a set of twodimensional and M-mode views, along with spectral Doppler and color Doppler evaluation of the intrathoracic cardiovascular structures (e.g., the myocardium, cardiac valves, pericardium, and great vessels).

  • Transthoracic and transesophageal echocardiography are frequently used as complementary imaging techniques. Accordingly, the advantages and disadvantages of these two methods should be understood.

  • Newer imaging modalities that are being introduced into the standard examination include contrast echocardiography, harmonic imaging modalities, parametric imaging modes, and selected three-dimensional techniques.

  • Echocardiography examinations using standardized and novel imaging modes are frequently applied to a wide range of new clinical treatments, including assessment of left ventricular assist devices.

  • In this growing field, important quality assurance measures have evolved along with imaging techniques to improve the quality of delivered care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Quinones MA, Douglas PS, Foster E, et al. ACC/AHA clinical competence statement on echocardiography: a report of the American College of Cardiology/American Heart Association/American College of Physicians-American Society of Internal Medicine Task Force on Clinical Competence. J Am Coll Cardiol 2003;41(4):687–708.

    PubMed  Google Scholar 

  2. Quinones MA, Douglas PS, Foster E, et al. ACC/AHA clinical competence statement on echocardiography: a report of the American College of Cardiology/American Heart Association/American College of Physicians-American Society of Internal Medicine Task Force on clinical competence. J Am Soc Echocardiogr 2003;16(4):379–402.

    PubMed  Google Scholar 

  3. Quinones MA, Douglas PS, Foster E, et al. American College of Cardiology/American Heart Association clinical competence statement on echocardiography: a report of the American College of Cardiology/American Heart Association/American College of Physicians—American Society of Internal Medicine Task Force on Clinical Competence. Circulation 2003;107(7):1068–1089.

    PubMed  Google Scholar 

  4. Ehler D, Carney DK, Dempsey AL, et al. Guidelines for cardiac sonographer education: recommendations of the American Society of Echocardiography Sonographer Training and Education Committee. J Am Soc Echocardiogr 2001;14(1):77–84.

    PubMed  CAS  Google Scholar 

  5. Thomas JD, Adams DB, Devries S, et al. Guidelines and recommendations for digital echocardiography. J Am Soc Echocardiogr 2005;18(3):287–297.

    PubMed  Google Scholar 

  6. Cerqueira MD, Weissman NJ, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Int J Cardiovasc Imaging 2002;18(1):539–542.

    PubMed  Google Scholar 

  7. Cerqueira MD, Weissman NJ, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. J Nucl Cardiol 2002;9(2):240–245.

    PubMed  Google Scholar 

  8. Cerqueira MD, Weissman NJ, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105(4):539–542.

    PubMed  Google Scholar 

  9. Gardin JM, Adams DB, Douglas PS, et al. Recommendations for a standardized report for adult transthoracic echocardiography: a report from the American Society of Echocardiography’s Nomenclature and Standards Committee and Task Force for a Standardized Echocardiography Report. J Am Soc Echocardiogr 2002;15(3):275–290.

    PubMed  Google Scholar 

  10. Edler I, Hertz CH. Use of ultrasonic reflectoscope for the continuous recording of movements of heart walls. Kungl Fysiografiska Sallskapets I Lund Forhandlingar 1954:24(40).

    Google Scholar 

  11. Edler I, Hertz CH. The use of ultrasonic reflectoscope for the continuous recording of the movements of heart walls. 1954. Clin Physiol Funct Imaging 2004;24(3):118–136.

    PubMed  CAS  Google Scholar 

  12. Feigenbaum H. Echocardiography, 1st ed. Philadelphia: Lea & Febiger, 1972.

    Google Scholar 

  13. Eggleton RC, Johnston KW. Real time mechanical scanning system compared with array techniques. IEEE Proc Sonics Ultrasonics 1974.

    Google Scholar 

  14. Bom N, Hugenholtz PG, Kloster FE, et al. Evaluation of structure recognition with the multiscan echocardiograph. A cooperative study in 580 patients. Ultrasound Med Biol 1974;1(3):243–252.

    PubMed  CAS  Google Scholar 

  15. Kisslo J, von Ramm OT, Thurstone FL. Cardiac imaging using a phased array ultrasound system. II. Clinical technique and application. Circulation 1976;53(2):262–267.

    PubMed  CAS  Google Scholar 

  16. von Ramm OT, Thurstone FL. Cardiac imaging using a phased array ultrasound system. I. System design. Circulation 1976;53(2):258–262.

    Google Scholar 

  17. Frazin L, Talano JV, Stephanides L, et al. Esophageal echocardiography. Circulation 1976;54(1):102–108.

    PubMed  CAS  Google Scholar 

  18. Hanrath P, Kremer P, Langenstein BA, et al. [Transesophageal echocardiography. A new method for dynamic ventricle function analysis]. Dtsch Med Wochenschr 1981;106(17):523–525.

    PubMed  CAS  Google Scholar 

  19. Brubakk AO, Angelsen BA, Hatle L. Diagnosis of valvular heart disease using transcutaneous Doppler ultrasound. Cardiovasc Res 1977;11(5):461–469.

    PubMed  CAS  Google Scholar 

  20. Hatle L, Angelsen B. Doppler Ultrasound in Cardiology: Physical Principles and Clinical Applications, 2nd ed. Philadelphia: Lea & Febiger, 1984.

    Google Scholar 

  21. Feigenbaum H. Echocardiography, 4th ed. Philadelphia: Lea & Febiger, 1986.

    Google Scholar 

  22. Omoto R. [Real-time intracardiac bloodflow imaging with color-coded two-dimensional Doppler technique: clinical significance of “2-D Doppler”]. Kokyu To Junkan 1984;32(3):217–225.

    PubMed  CAS  Google Scholar 

  23. Takamoto S, Kyo S, Adachi H, et al. Intraoperative color flow mapping by real-time two-dimensional Doppler echocardiography for evaluation of valvular and congenital heart disease and vascular disease. J Thorac Cardiovasc Surg 1985;90(6):802–812.

    PubMed  CAS  Google Scholar 

  24. Switzer DF, Nanda NC. Doppler color flow mapping. Ultrasound Med Biol. May–Jun 1985;11(3):403–416.

    PubMed  CAS  Google Scholar 

  25. Smith MD, Grayburn PA, Spain MG, et al. Observer variability in the quantitation of Doppler color flow jet areas for mitral and aortic regurgitation. J Am Coll Cardiol 1988;11(3):579–584.

    PubMed  CAS  Google Scholar 

  26. Sahn DJ. Instrumentation and physical factors related to visualization of stenotic and regurgitant jets by Doppler color flow mapping. J Am Coll Cardiol 1988;12(5):1354–1365.

    PubMed  CAS  Google Scholar 

  27. Omoto R. New trend in transesophageal echocardiographic technology. Use of biplane transesophageal probe. Circulation 1990;82(4):1507–1509.

    PubMed  CAS  Google Scholar 

  28. Bansal RC, Shakudo M, Shah PM, et al. Biplane transesophageal echocardiography: technique, image orientation, and preliminary experience in 131 patients. J Am Soc Echocardiogr 1990;3(5):348–366.

    PubMed  CAS  Google Scholar 

  29. Seward JB, Khandheria BK, Edwards WD, et al. Biplanar transesophageal echocardiography: anatomic correlations, image orientation, and clinical applications. Mayo Clin Proc 1990;65(9):1193–1213.

    PubMed  CAS  Google Scholar 

  30. Flachskampf FA, Hoffmann R, Verlande M, et al. Initial experience with a multiplane transoesophageal echo-transducer: assessment of diagnostic potential. Eur Heart J 1992;13(9):1201–1206.

    PubMed  CAS  Google Scholar 

  31. Seward JB, Khandheria BK, Freeman WK, et al. Multiplane transesophageal echocardiography: image orientation, examination technique, anatomic correlations, and clinical applications. Mayo Clin Proc 1993;68(6):523–551.

    PubMed  CAS  Google Scholar 

  32. Appleton CP, Hatle LK, Popp RL. Relation of transmitral flow velocity patterns to left ventricular diastolic function: new insights from a combined hemodynamic and Doppler echocardiographic study. J Am Coll Cardiol 1988;12(2):426–440.

    PubMed  CAS  Google Scholar 

  33. Nishimura RA, Appleton CP, Redfield MM, et al. Noninvasive doppler echocardiographic evaluation of left ventricular filling pressures in patients with cardiomyopathies: a simultaneous Doppler echocardiographic and cardiac catheterization study. J Am Coll Cardiol 1996;28(5):1226–1233.

    PubMed  CAS  Google Scholar 

  34. Klein AL, Tajik AJ. Doppler assessment of pulmonary venous flow in healthy subjects and in patients with heart disease. J Am Soc Echocardiogr 1991;4(4):379–392.

    PubMed  CAS  Google Scholar 

  35. Oh JK, Hatle LK, Seward JB, et al. Diagnostic role of Doppler echocardiography in constrictive pericarditis. J Am Coll Cardiol 1994;23(1):154–162.

    PubMed  CAS  Google Scholar 

  36. Appleton CP, Galloway JM, Gonzalez MS, et al. Estimation of left ventricular filling pressures using two-dimensional and Doppler echocardiography in adult patients with cardiac disease. Additional value of analyzing left atrial size, left atrial ejection fraction and the difference in duration of pulmonary venous and mitral flow velocity at atrial contraction. J Am Coll Cardiol 1993;22(7):1972–1982.

    PubMed  CAS  Google Scholar 

  37. Takatsuji H, Mikami T, Urasawa K, et al. A new approach for evaluation of left ventricular diastolic function: spatial and temporal analysis of left ventricular filling flow propagation by color M-mode Doppler echocardiography. J Am Coll Cardiol 1996;27(2):365–371.

    PubMed  CAS  Google Scholar 

  38. Stainback RF. Congestive heart failure arising from diastolic dysfunction in the presence of normal left-ventricular systolic function. Tex Heart Inst J 1999;26(1):34–41.

    PubMed  CAS  Google Scholar 

  39. Ha JW, Ommen SR, Tajik AJ, et al. Differentiation of constrictive pericarditis from restrictive cardiomyopathy using mitral annular velocity by tissue Doppler echocardiography. Am J Cardiol 2004;94(3):316–319.

    PubMed  Google Scholar 

  40. Klein AL, Tajik AJ. Doppler assessment of diastolic function in cardiac amyloidosis. Echocardiography 1991;8(2):233–251.

    PubMed  CAS  Google Scholar 

  41. Aurigemma GP, Gottdiener JS, Shemanski L, et al. Predictive value of systolic and diastolic function for incident congestive heart failure in the elderly: the cardiovascular health study. J Am Coll Cardiol 2001;37(4):1042–1048.

    PubMed  CAS  Google Scholar 

  42. Nagueh SF, McFalls J, Meyer D, et al. Tissue Doppler imaging predicts the development of hypertrophic cardiomyopathy in subjects with subclinical disease. Circulation 2003;108(4):395–398.

    PubMed  Google Scholar 

  43. von Bibra H, Tuchnitz A, Klein A, et al. Regional diastolic function by pulsed Doppler myocardial mapping for the detection of left ventricular ischemia during pharmacologic stress testing: a comparison with stress echocardiography and perfusion scintigraphy. J Am Coll Cardiol 2000;36(2):444–452.

    Google Scholar 

  44. Nagueh SF, Kopelen HA, Quinones MA. Assessment of left ventricular filling pressures by Doppler in the presence of atrial fibrillation. Circulation 1996;94(9):2138–2145.

    PubMed  CAS  Google Scholar 

  45. Nagueh SF, Lakkis NM, Middleton KJ, et al. Doppler estimation of left ventricular filling pressures in patients with hypertrophic cardiomyopathy. Circulation 19 1999;99(2):254–261.

    PubMed  CAS  Google Scholar 

  46. Nagueh SF, Middleton KJ, Kopelen HA, et al. Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol 1997;30(6):1527–1533.

    PubMed  CAS  Google Scholar 

  47. Werner GS, Schaefer C, Dirks R, et al. Prognostic value of Doppler echocardiographic assessment of left ventricular filling in idiopathic dilated cardiomyopathy. Am J Cardiol 1994;73(11):792–798.

    PubMed  CAS  Google Scholar 

  48. Rihal CS, Nishimura RA, Hatle LK, et al. Systolic and diastolic dysfunction in patients with clinical diagnosis of dilated cardiomyopathy. Relation to symptoms and prognosis. Circulation 1994;90(6):2772–2779.

    PubMed  CAS  Google Scholar 

  49. Xie GY, Berk MR, Smith MD, et al. Prognostic value of Doppler transmitral flow patterns in patients with congestive heart failure. J Am Coll Cardiol 1994;24(1):132–139.

    PubMed  CAS  Google Scholar 

  50. Dokainish H, Zoghbi WA, Lakkis NM, et al. Incremental predictive power of B-type natriuretic peptide and tissue Doppler echocardiography in the prognosis of patients with congestive heart failure. J Am Coll Cardiol 2005;45(8):1223–1226.

    PubMed  CAS  Google Scholar 

  51. Moller JE, Sondergaard E, Poulsen SH, et al. Pseudonormal and restrictive filling patterns predict left ventricular dilation and cardiac death after a first myocardial infarction: a serial color M-mode Doppler echocardiographic study. J Am Coll Cardiol 2000;36(6):1841–1846.

    PubMed  CAS  Google Scholar 

  52. Pinamonti B, Di Lenarda A, Sinagra G, et al. Restrictive left ventricular filling pattern in dilated cardiomyopathy assessed by Doppler echocardiography: clinical, echocardiographic and hemodynamic correlations and prognostic implications. Heart Muscle Disease Study Group. J Am Coll Cardiol 1993;22(3):808–815.

    PubMed  CAS  Google Scholar 

  53. Pinamonti B, Zecchin M, Di Lenarda A, et al. Persistence of restrictive left ventricular filling pattern in dilated cardiomyopathy: an ominous prognostic sign. J Am Coll Cardiol 1997;29(3):604–612.

    PubMed  CAS  Google Scholar 

  54. Temporelli PL, Corra U, Imparato A, et al. Reversible restrictive left ventricular diastolic filling with optimized oral therapy predicts a more favorable prognosis in patients with chronic heart failure. J Am Coll Cardiol 1998;31(7):1591–1597.

    PubMed  CAS  Google Scholar 

  55. Whalley GA, Doughty RN, Gamble GD, et al. Pseudonormal mitral filling pattern predicts hospital re-admission in patients with congestive heart failure. J Am Coll Cardiol 2002;39(11):1787–1795.

    PubMed  Google Scholar 

  56. Nagueh SF, Lakkis NM, Middleton KJ, et al. Changes in left ventricular diastolic function 6 months after nonsurgical septal reduction therapy for hypertrophic obstructive cardiomyopathy. Circulation 1999;99(3):344–347.

    PubMed  CAS  Google Scholar 

  57. Byrd BF, 3rd, Wahr D, Wang YS, et al. Left ventricular mass and volume/mass ratio determined by two-dimensional echocardiography in normal adults. J Am Coll Cardiol 1985;6(5):1021–1025.

    PubMed  Google Scholar 

  58. Schiller NB, Acquatella H, Ports TA, et al. Left ventricular volume from paired biplane two-dimensional echocardiography. Circulation 1979;60(3):547–555.

    PubMed  CAS  Google Scholar 

  59. Weyman AE. The year in echocardiography. J Am Coll Cardiol 2004;43(1):140–148.

    PubMed  Google Scholar 

  60. Horton SC, Khodaverdian R, Chatelain P, et al. Left ventricular assist device malfunction: an approach to diagnosis by echocardiography. J Am Coll Cardiol 2005;45(9):1435–1440.

    PubMed  Google Scholar 

  61. Ender J, Anwar N, Brose S, et al. Epicardial echocardiography for correct placement of the intracardial biventricular assist device (Impella). Thorac Cardiovasc Surg 2002;50(2):92–94.

    PubMed  CAS  Google Scholar 

  62. Croitoru M, Stainback RF, Hernandez A, et al. Doppler echocardiographic diagnosis of inlet and outlet conduit dysfunction in patients with the TCI Heartmate vented electric left ventricular assist device. J Am Coll Cardiol 2001;37(2, suppl 1):422A.

    Google Scholar 

  63. Damaraju S, Stainback RF, Hernandez A, et al. Normal Doppler echocardiographic parameters for inlet and outlet cannulae in clinically stable patients with left ventricular assist devices. J Am Coll Cardiol 1999;33(2, suppl 1):419A.

    Google Scholar 

  64. Stainback RF, Croitoru M, Hernandez A, et al. Echocardiographic evaluation of the Jarvik 2000 axial-flow LVAD. Tex Heart Inst J 2005;32(3):263–270.

    PubMed  Google Scholar 

  65. Ryan T, Vasey CG, Presti CF, et al. Exercise echocardiography: detection of coronary artery disease in patients with normal left ventricular wall motion at rest. J Am Coll Cardiol 1988;11(5):993–999.

    PubMed  CAS  Google Scholar 

  66. Ryan T, Armstrong WF, O’Donnell JA, et al. Risk stratification after acute myocardial infarction by means of exercise twodimensional echocardiography. Am Heart J 1987;114(6):1305–1316.

    PubMed  CAS  Google Scholar 

  67. Quinones MA, Verani MS, Haichin RM, et al. Exercise echocardiography versus 201Tl single-photon emission computed tomography in evaluation of coronary artery disease. Analysis of 292 patients. Circulation 1992;85(3):1026–1031.

    PubMed  CAS  Google Scholar 

  68. Badruddin SM, Ahmad A, Mickelson J, et al. Supine bicycle versus post-treadmill exercise echocardiography in the detection of myocardial ischemia: a randomized single-blind crossover trial. J Am Coll Cardiol 1999;33(6):1485–1490.

    PubMed  CAS  Google Scholar 

  69. Afridi I, Main ML, Grayburn PA. Accuracy of dobutamine echocardiography for detection of myocardial viability in patients with an occluded left anterior descending coronary artery. J Am Coll Cardiol 1996;28(2):455–459.

    PubMed  CAS  Google Scholar 

  70. Picano E, Ostojic M, Sicari R, et al. Dipyridamole stress echocardiography: state of the art 1996. EPIC (Echo Persantin International Cooperative) Study Group. Eur Heart J 1997;18(suppl D):D16–23.

    PubMed  CAS  Google Scholar 

  71. Afridi I, Grayburn PA, Panza JA, et al. Myocardial viability during dobutamine echocardiography predicts survival in patients with coronary artery disease and severe left ventricular systolic dysfunction. J Am Coll Cardiol 1998;32(4):921–926.

    PubMed  CAS  Google Scholar 

  72. Larsen RL, Applegate PM, Dyar DA, et al. Dobutamine stress echocardiography for assessing coronary artery disease after transplantation in children. J Am Coll Cardiol 1998;32(2):515–520.

    PubMed  CAS  Google Scholar 

  73. deFilippi CR, Willett DL, Brickner ME, et al. Usefulness of dobutamine echocardiography in distinguishing severe from nonsevere valvular aortic stenosis in patients with depressed left ventricular function and low transvalvular gradients. Am J Cardiol 1995;75(2):191–194.

    PubMed  CAS  Google Scholar 

  74. Monin JL, Monchi M, Gest V, et al. Aortic stenosis with severe left ventricular dysfunction and low transvalvular pressure gradients: risk stratification by low-dose dobutamine echocardiography. J Am Coll Cardiol 2001;37(8):2101–2107.

    PubMed  CAS  Google Scholar 

  75. Hecker SL, Zabalgoitia M, Ashline P, et al. Comparison of exercise and dobutamine stress echocardiography in assessing mitral stenosis. Am J Cardiol 1997;80(10):1374–1377.

    PubMed  CAS  Google Scholar 

  76. Reis G, Motta MS, Barbosa MM, et al. Dobutamine stress echocardiography for noninvasive assessment and risk stratification of patients with rheumatic mitral stenosis. J Am Coll Cardiol 2004;43(3):393–401.

    PubMed  Google Scholar 

  77. Cheitlin MD. Stress echocardiography in mitral stenosis: when is it useful? J Am Coll Cardiol 2004;43(3):402–404.

    PubMed  Google Scholar 

  78. Yock PG, Linker DT, Angelsen BA. Two-dimensional intravascular ultrasound: technical development and initial clinical experience. J Am Soc Echocardiogr 1989;2(4):296–304.

    PubMed  CAS  Google Scholar 

  79. Sonoda S, Morino Y, Ako J, et al. Impact of final stent dimensions on long-term results following sirolimus-eluting stent implantation: serial intravascular ultrasound analysis from the Sirius trial. J Am Coll Cardiol 2004;43(11):1959–1963.

    PubMed  Google Scholar 

  80. Yock PG, Fitzgerald PJ. Intravascular ultrasound: state of the art and future directions. Am J Cardiol 1998;81(7A):27E–32E.

    PubMed  CAS  Google Scholar 

  81. Nissen SE, Gurley JC, Grines CL, et al. Intravascular ultrasound assessment of lumen size and wall morphology in normal subjects and patients with coronary artery disease. Circulation 1991;84(3):1087–1099.

    PubMed  CAS  Google Scholar 

  82. Nissen SE, Tuzcu EM, Schoenhagen P, et al. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA 2004;291(9):1071–1080.

    PubMed  CAS  Google Scholar 

  83. Ahmad M, Xie T, Chamoun AJ, et al. Images in cardiovascular medicine. Real-time three-dimensional echocardiography with real-time volume rendering in assessment of left ventricular apical thrombi. Circulation 2002;106(13):e53.

    PubMed  Google Scholar 

  84. Deng J, Sullivan ID, Yates R, et al. Real-time three-dimensional fetal echocardiography—optimal imaging windows. Ultrasound Med Biol 2002;28(9):1099–1105.

    PubMed  Google Scholar 

  85. Sugeng L, Weinert L, Thiele K, et al. Real-time three-dimensional echocardiography using a novel matrix array transducer. Echocardiography 2003;20(7):623–635.

    PubMed  Google Scholar 

  86. Kuhl HP, Schreckenberg M, Rulands D, et al. High-resolution transthoracic real-time three-dimensional echocardiography: quantitation of cardiac volumes and function using semi-automatic border detection and comparison with cardiac magnetic resonance imaging. J Am Coll Cardiol 2004;43(11):2083–2090.

    PubMed  Google Scholar 

  87. Zamorano J, Cordeiro P, Sugeng L, et al. Real-time threedimensional echocardiography for rheumatic mitral valve stenosis evaluation: an accurate and novel approach. J Am Coll Cardiol 2004;43(11):2091–2096.

    PubMed  Google Scholar 

  88. Roelandt J, Bom K, Hugenholtz PG. The ultrasound cardioscope: a hand-held scanner for real-time cardiac imaging. J Clin Ultrasound 1980;8(3):221–225.

    PubMed  CAS  Google Scholar 

  89. Schwarz KQ, Meltzer RS. Experience rounding with a handheld two-dimensional cardiac ultrasound device. Am J Cardiol 1988;62(1):157–159.

    PubMed  CAS  Google Scholar 

  90. Schiller NB. Hand-held echocardiography: revolution or hassle? J Am Coll Cardiol 2001;37(8):2023–2024.

    PubMed  CAS  Google Scholar 

  91. Xie T, Chamoun AJ, McCulloch M, et al. Rapid screening of cardiac patients with a miniaturized hand-held ultrasound imager—comparisons with physical examination and conventional two-dimensional echocardiography. Clin Cardiol 2004;27(4):241–245.

    PubMed  Google Scholar 

  92. Seward JB, Douglas PS, Erbel R, et al. Hand-Carried Cardiac Ultrasound (HCU) Device: Recommendations Regarding New Technology. American Society of Echocardiography, Task Force on New Technology, http://www.asecho.org/], 2005.

    Google Scholar 

  93. Pandian NG, Kumar R, Katz SE, et al. Real-time, intracardiac, two-dimensional echocardiography: enhanced depth of field with a low-frequency (12.5 MHz) ultrasound catheter. Echocardiography 1991;8(4):407–422.

    PubMed  CAS  Google Scholar 

  94. Schwartz SL, Gillam LD, Weintraub AR, et al. Intracardiac echocardiography in humans using a small-sized (6F), low frequency (12.5 MHz) ultrasound catheter. Methods, imaging planes and clinical experience. J Am Coll Cardiol 1993;21(1):189–198.

    PubMed  CAS  Google Scholar 

  95. Chu E, Kalman JM, Kwasman MA, et al. Intracardiac echocardiography during radiofrequency catheter ablation of cardiac arrhythmias in humans. J Am Coll Cardiol 1994;24(5):1351–1357.

    PubMed  CAS  Google Scholar 

  96. Lesh MD, Kalman JM, Karch MR. Use of intracardiac echocardiography during electrophysiologic evaluation and therapy of atrial arrhythmias. J Cardiovasc Electrophysiol 1998;9(8 suppl):S40–47.

    PubMed  CAS  Google Scholar 

  97. Fu M, Hung JS, Lo PH, et al. Intracardiac echocardiography via the transvenous approach with use of 8F 10-MHz ultrasound catheters. Mayo Clin Proc 1999;74(8):775–783.

    PubMed  CAS  Google Scholar 

  98. Bruce CJ, Nishimura RA, Rihal CS, et al. Intracardiac echocardiography in the interventional catheterization laboratory: preliminary experience with a novel, phased-array transducer. Am J Cardiol 2002;89(5):635–640.

    PubMed  Google Scholar 

  99. Salem MI, Makaryus AN, Kort S, et al. Intracardiac echocardiography using the AcuNav ultrasound catheter during percutaneous balloon mitral valvuloplasty. J Am Soc Echocardiogr 2002;15(12):1533–1537.

    PubMed  Google Scholar 

  100. Mullen MJ, Dias BF, Walker F, et al. Intracardiac echocardiography guided device closure of atrial septal defects. J Am Coll Cardiol 2003;41(2):285–292.

    PubMed  Google Scholar 

  101. Bartel T, Konorza T, Arjumand J, et al. Intracardiac echocardiography is superior to conventional monitoring for guiding device closure of interatrial communications. Circulation 2003;107(6):795–797.

    PubMed  Google Scholar 

  102. Jongbloed MR, Schalij MJ, Zeppenfeld K, et al. Clinical applications of intracardiac echocardiography in interventional procedures. Heart 2005;91(7):981–990.

    PubMed  CAS  Google Scholar 

  103. Kohl T, Westphal M, Strumper D, et al. Multimodal fetal transesophageal echocardiography for fetal cardiac intervention in sheep. Circulation 2001;104(15):1757–1760.

    PubMed  CAS  Google Scholar 

  104. Verma A, Marrouche NF, Natale A. Pulmonary vein antrum isolation: intracardiac echocardiography-guided technique. J Cardiovasc Electrophysiol 2004;15(11):1335–1340.

    PubMed  Google Scholar 

  105. Sutherland GR, Bijnens B, McDicken WN. Tissue Doppler echocardiography: historical perspective and technological considerations. Echocardiography 1999;16(5):445–453.

    PubMed  Google Scholar 

  106. Mele D, Pasanisi G, Heimdal A, et al. Improved recognition of dysfunctioning myocardial segments by longitudinal strain rate versus velocity in patients with myocardial infarction. J Am Soc Echocardiogr 2004;17(4):313–321.

    PubMed  Google Scholar 

  107. Sutherland GR, Di Salvo G, Claus P, et al. Strain and strain rate imaging: a new clinical approach to quantifying regional myocardial function. J Am Soc Echocardiogr 2004;17(7):788–802.

    PubMed  Google Scholar 

  108. Herbots L, Maes F, D’Hooge J, et al. Quantifying myocardial deformation throughout the cardiac cycle: a comparison of ultrasound strain rate, gray scale M-mode and magnetic resonance imaging. Ultrasound Med Biol 2004;30(5):591–598.

    PubMed  CAS  Google Scholar 

  109. Gilman G, Khandheria BK, Hagen ME, et al. Strain rate and strain: a step-by-step approach to image and data acquisition. J Am Soc Echocardiogr 2004;17(9):1011–1020.

    PubMed  Google Scholar 

  110. Voigt JU, Arnold MF, Karlsson M, et al. Assessment of regional longitudinal myocardial strain rate derived from doppler myocardial imaging indexes in normal and infarcted myocardium. J Am Soc Echocardiogr 2000;13(6):588–598.

    PubMed  CAS  Google Scholar 

  111. Sun JP, Popovic ZB, Greenberg NL, et al. Noninvasive quantification of regional myocardial function using Doppler-derived velocity, displacement, strain rate, and strain in healthy volunteers: effects of aging. J Am Soc Echocardiogr 2004;17(2):132–138.

    PubMed  Google Scholar 

  112. Palka P, Lange A, Fleming AD, et al. Doppler tissue imaging: myocardial wall motion velocities in normal subjects. J Am Soc Echocardiogr 1995;8(5 pt 1):659–668.

    PubMed  CAS  Google Scholar 

  113. Yip G, Abraham T, Belohlavek M, et al. Clinical applications of strain rate imaging. J Am Soc Echocardiogr 2003;16(12):1334–1342.

    PubMed  Google Scholar 

  114. Voigt JU, Exner B, Schmiedehausen K, et al. Strain-rate imaging during dobutamine stress echocardiography provides objective evidence of inducible ischemia. Circulation 2003;107(16):2120–2126.

    PubMed  Google Scholar 

  115. Bax JJ, Bleeker GB, Marwick TH, et al. Left ventricular dyssynchrony predicts response and prognosis after cardiac resynchronization therapy. J Am Coll Cardiol 2004;44(9):1834–1840.

    PubMed  Google Scholar 

  116. Bax JJ, Ansalone G, Breithardt OA, et al. Echocardiographic evaluation of cardiac resynchronization therapy: ready for routine clinical use? A critical appraisal. J Am Coll Cardiol 2004;44(1):1–9.

    PubMed  Google Scholar 

  117. Sogaard P, Hassager C. Tissue Doppler imaging as a guide to resynchronization therapy in patients with congestive heart failure. Curr Opin Cardiol 2004;19(5):447–451.

    PubMed  Google Scholar 

  118. Notabartolo D, Merlino JD, Smith AL, et al. Usefulness of the peak velocity difference by tissue Doppler imaging technique as an effective predictor of response to cardiac resynchronization therapy. Am J Cardiol 2004;94(6):817–820.

    PubMed  Google Scholar 

  119. Gorcsan J 3rd, Kanzaki H, Bazaz R, et al. Usefulness of echocardiographic tissue synchronization imaging to predict acute response to cardiac resynchronization therapy. Am J Cardiol 2004;93(9):1178–1181.

    PubMed  Google Scholar 

  120. Yu CM, Fung WH, Lin H, et al. Predictors of left ventricular reverse remodeling after cardiac resynchronization therapy for heart failure secondary to idiopathic dilated or ischemic cardiomyopathy. Am J Cardiol 2003;91(6):684–688.

    PubMed  Google Scholar 

  121. Yu CM, Fung JW, Chan CK, et al. Comparison of efficacy of reverse remodeling and clinical improvement for relatively narrow and wide QRS complexes after cardiac resynchronization therapy for heart failure. J Cardiovasc Electrophysiol 2004;15(9):1058–1065.

    PubMed  Google Scholar 

  122. St. John Sutton MG, Plappert T, Abraham WT, et al. Effect of cardiac resynchronization therapy on left ventricular size and function in chronic heart failure. Circulation 2003;107(15):1985–1990.

    PubMed  Google Scholar 

  123. Wei K, Crouse L, Weiss J, et al. Comparison of usefulness of dipyridamole stress myocardial contrast echocardiography to technetium-99m sestamibi single-photon emission computed tomography for detection of coronary artery disease (PB127 Multicenter Phase 2 Trial results). Am J Cardiol 2003;91(11):1293–1298.

    PubMed  Google Scholar 

  124. Kaul S, Senior R, Firschke C, et al. Incremental value of cardiac imaging in patients presenting to the emergency department with chest pain and without ST-segment elevation: a multicenter study. Am Heart J 2004;148(1):129–136.

    PubMed  Google Scholar 

  125. Lepper W, Belcik T, Wei K, et al. Myocardial contrast echocardiography. Circulation 2004;109(25):3132–3135.

    PubMed  Google Scholar 

  126. Wei K, Jayaweera AR, Firoozan S, et al. Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation 1998;97(5):473–483.

    PubMed  CAS  Google Scholar 

  127. Villanueva FS, Wagner WR, Vannan MA, et al. Targeted ultrasound imaging using microbubbles. Cardiol Clin 2004;22(2):283–298, vii.

    PubMed  Google Scholar 

  128. Kondo I, Ohmori K, Oshita A, et al. Leukocyte-targeted myocardial contrast echocardiography can assess the degree of acute allograft rejection in a rat cardiac transplantation model. Circulation 2004;109(8):1056–1061.

    PubMed  Google Scholar 

  129. Chen S, Shohet RV, Bekeredjian R, et al. Optimization of ultrasound parameters for cardiac gene delivery of adenoviral or plasmid deoxyribonucleic acid by ultrasound-targeted microbubble destruction. J Am Coll Cardiol 2003;42(2):301–308.

    PubMed  CAS  Google Scholar 

  130. ACC/AHA guidelines for the management of patients with valvular heart disease. A report of the American College of Cardiology/American Heart Association. Task Force on Practice Guidelines (Committee on Management of Patients with Valvular Heart Disease). J Am Coll Cardiol 1998;32(5):1486–1588.

    Google Scholar 

  131. Bonow RO, Carabello B, de Leon AC, Jr., et al. Guidelines for the management of patients with valvular heart disease: executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Patients with Valvular Heart Disease). Circulation 1998;98(18):1949–1984.

    PubMed  CAS  Google Scholar 

  132. Cheitlin MD, Armstrong WF, Aurigemma GP, et al. ACC/AHA/ASE 2003 Guideline Update for the Clinical Application of Echocardiography: summary article. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASE Committee to Update the 1997 Guidelines for the Clinical Application of Echocardiography). J Am Soc Echocardiogr 2003;16(10):1091–1110.

    PubMed  Google Scholar 

  133. Hunt SA, Baker DW, Chin MH, et al. ACC/AHA Guidelines for the Evaluation and Management of Chronic Heart Failure in the Adult: Executive Summary A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1995 Guidelines for the Evaluation and Management of Heart Failure): Developed in Collaboration with the International Society for Heart and Lung Transplantation; Endorsed by the Heart Failure Society of America. Circulation 2001;104(24):2996–3007.

    PubMed  CAS  Google Scholar 

  134. Hunt SA, Baker DW, Chin MH, et al. ACC/AHA guidelines for the evaluation and management of chronic heart failure in the adult: executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to revise the 1995 Guidelines for the Evaluation and Management of Heart Failure). J Am Coll Cardiol 2001;38(7):2101–2113.

    PubMed  CAS  Google Scholar 

  135. Ayres NA, Miller-Hance W, Fyfe DA, et al. Indications and guidelines for performance of transesophageal echocardiography in the patient with pediatric acquired or congenital heart disease: report from the task force of the Pediatric Council of the American Society of Echocardiography. J Am Soc Echocardiogr 2005;18(1):91–98.

    PubMed  Google Scholar 

  136. Cheitlin MD, Armstrong WF, Aurigemma GP, et al. ACC/AHA/ASE 2003 guideline update for the clinical application of echocardiography—summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASE Committee to Update the 1997 Guidelines for the Clinical Application of Echocardiography). J Am Coll Cardiol 3 2003;42(5):954–970.

    PubMed  Google Scholar 

  137. Cheitlin MD, Armstrong WF, Aurigemma GP, et al. ACC/AHA/ASE 2003 guideline update for the clinical application of echocardiography: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASE Committee to Update the 1997 Guidelines for the Clinical Application of Echocardiography). Circulation 2003;108(9):1146–1162.

    PubMed  Google Scholar 

  138. Cheitlin MD, Alpert JS, Armstrong WF, et al. ACC/AHA Guidelines for the Clinical Application of Echocardiography. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Clinical Application of Echocardiography). Developed in collaboration with the American Society of Echocardiography. Circulation 1997;95(6):1686–1744.

    PubMed  CAS  Google Scholar 

  139. Cheitlin MD, Alpert JS, Armstrong WF, et al. ACC/AHA guidelines for the clinical application of echocardiography: executive summary. A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Committee on Clinical Application of Echocardiography). Developed in collaboration with the American Society of Echocardiography. J Am Coll Cardiol 1997;29(4):862–879.

    PubMed  CAS  Google Scholar 

  140. Gottdiener JS, Bednarz J, Devereux R, et al. American Society of Echocardiography recommendations for use of echocardiography in clinical trials. J Am Soc Echocardiogr 2004;17(10):1086–1119.

    PubMed  Google Scholar 

  141. Shanewise JS, Cheung AT, Aronson S, et al. ASE/SCA guidelines for performing a comprehensive intraoperative multiplane transesophageal echocardiography examination: recommendations of the American Society of Echocardiography Council for Intraoperative Echocardiography and the Society of Cardiovascular Anesthesiologists Task Force for Certification in Perioperative Transesophageal Echocardiography. Anesth Analg 1999;89(4):870–884.

    PubMed  CAS  Google Scholar 

  142. Shanewise JS, Cheung AT, Aronson S, et al. ASE/SCA guidelines for performing a comprehensive intraoperative multiplane transesophageal echocardiography examination: recommendations of the American Society of Echocardiography Council for Intraoperative Echocardiography and the Society of Cardiovascular Anesthesiologists Task Force for Certification in Perioperative Transesophageal Echocardiography. J Am Soc Echocardiogr 1999;12(10):884–900.

    PubMed  CAS  Google Scholar 

  143. Edelman SK. Understanding Ultrasound Physics, 3rd ed. Woodlands, Texas: ESP, 2004.

    Google Scholar 

  144. Feigenbaum H, ed. Instrumentation. In: Echocardiography, 5th ed. Philadelphia: Lea & Febiger, 1994:1–59.

    Google Scholar 

  145. Feigenbaum H, Armstrong WF, Ryan T, eds. Ultrasound physics and instrumentation. In: Feigenbaum’s Echocardiography, 6th ed. Philadelphia: Lippincott Williams & Wilkins, 2005.

    Google Scholar 

  146. Weyman AE. Chapter 1: Physical principles of ultrasound. Principles and practice of echocardiography. 2nd ed. Philadelphia: Lea & Febiger; 1994:3–28.

    Google Scholar 

  147. Weyman AE, ed. Cross-sectional scanning: technical principles and instrumentation. In: Principles and Practice of Echocardiography, 2nd ed. Philadelphia: Lea & Febiger, 1994:29–55.

    Google Scholar 

  148. Pitzalis MV, Iacoviello M, Romito R, et al. Cardiac resynchronization therapy tailored by echocardiographic evaluation of ventricular asynchrony. J Am Coll Cardiol 2002;40(9):1615–1622.

    PubMed  Google Scholar 

  149. Raisinghani A, DeMaria AN. Physical principles of microbubble ultrasound contrast agents. Am J Cardiol 18 2002;90(10A):3J–7J.

    PubMed  Google Scholar 

  150. Yock PG, Popp RL. Noninvasive estimation of right ventricular systolic pressure by Doppler ultrasound in patients with tricuspid regurgitation. Circulation 1984;70:657–662.

    PubMed  CAS  Google Scholar 

  151. Kircher BJ, Himelman RB, Schiller NB. Noninvasive estimation of right atrial pressure from the inspiratory collapse of the inferior vena cava. Am J Cardiol 1990;66:493–496.

    PubMed  CAS  Google Scholar 

  152. Jue J, Chung W, Schiller NB. Does inferior vena cava size predict right atrial pressures in patients receiving mechanical ventilation? J Am Soc Echocardiogr 1992;5:613–619.

    PubMed  CAS  Google Scholar 

  153. Himelman RB, Stulbarg M, Kircher B, et al. Noninvasive evaluation of pulmonary artery pressure during exercise by salineenhanced Doppler echocardiography in chronic pulmonary disease. Circulation 1989;79:863–871.

    PubMed  CAS  Google Scholar 

  154. Masuyama T, Kodama K, Kitabatake A, Sato H, Nanto S, Inoue M. Continuous-wave Doppler echocardiographic detection of pulmonary regurgitation and its application to noninvasive estimation of pulmonary artery pressure. Circulation 1986;74:484–492.

    PubMed  CAS  Google Scholar 

  155. Huang ZH, Long WY, Xie GY, Kwan OL, DeMaria AN. Comparison of gray-scale and B-color ultrasound images in evaluating left ventricular systolic function in coronary artery disease. Am Heart J 1992;123:395–402.

    PubMed  CAS  Google Scholar 

  156. Handschumacher MD, Lethor JP, Siu SC, et al. A new integrated system for three-dimensional echocardiographic reconstruction: development and validation for ventricular volume with application in human subjects. J Am Coll Cardiol 1993;21:743–753.

    PubMed  CAS  Google Scholar 

  157. Levine RA, Handschumacher MD, Sanfilippo AJ, et al. Threedimensional echocardiographic reconstruction of the mitral valve, with implications for the diagnosis of mitral valve prolapse. Circulation 1989;80:589–598.

    PubMed  CAS  Google Scholar 

  158. Gopal AS, Keller AM, Rigling R, King DL Jr, King DL. Left ventricular volume and endocardial surface area by three-dimensional echocardiography: comparison with two-dimensional echocardiography and nuclear magnetic resonance imaging in normal subjects. J Am Coll Cardiol 1993;22:258–270.

    PubMed  CAS  Google Scholar 

  159. Pandian NG, Roelandt J, Nanda NC, et al. Dynamic threedimensional echocardiography: methods and clinical potential. Echocardiography 1994;11:237–259.

    Google Scholar 

  160. Roelandt JR, ten Cate FJ, Vletter WB, Taams MA. Ultrasonic dynamic three-dimensional visualization of the heart with a multiplane transesophageal imaging transducer. J Am Soc Echogr 1994;7:217–229.

    CAS  Google Scholar 

  161. Sheikh K, Smith SW, von Ramm O, Kisslo J. Real-time, threedimensional echocardiography: feasibility and initial use. Echocardiography 1991;8:119–125.

    PubMed  CAS  Google Scholar 

  162. Horton SC, Khodaverdian R, Chatelain P, et al. Left ventricular assist device malfunction: an approach to diagnosis by echocardiography. J Am Coll Cardiol 2005;45:1435–1440.

    PubMed  Google Scholar 

  163. Ferrari M, Kadipasaoglu KA, Croitoru M, et al. Evaluation of myocardial function in patients with end-stage heart failure during support with the Jarvik 2000 left ventricular assist device. J Heart Lung Transplant 2005;24:226–228.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

Stainback, R.F. (2007). Introduction to Echocardiography. In: Willerson, J.T., Wellens, H.J.J., Cohn, J.N., Holmes, D.R. (eds) Cardiovascular Medicine. Springer, London. https://doi.org/10.1007/978-1-84628-715-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-715-2_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-188-4

  • Online ISBN: 978-1-84628-715-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics