Skip to main content

Genetics of Osteoporosis in Older Age

  • Chapter
Osteoporosis in Older Persons

Osteoporosis results from a failure to acquire optimal peak bone mass during growth (1) and/or to maintain bone mass in later years. There are two backgrounds for the pathophysiology of invo-lutional osteoporosis: a rapid bone loss after menopause as a result of estrogen withdrawal, and a gradual age-related bone loss thereafter. Women experience a more rapid phase of bone loss after the menopause, caused mainly by estrogen deficiency (2,3), but a less rapid bone loss persists in older persons, in both men and women (4,5). Some authors thus distinguish between two types of pathophysiology of osteoporosis: menopausal and age-related (“senile.”). Bone health in old age depends on a susceptibility to osteoporotic fractures, which seems to be dependent on genetic factors (heritable). The genetic contribution to involutional osteoporosis is substantial and has been extensively studied. With recent advances in the elucidation of the mechanisms involved in osteoporosis, there is a recognition that the two types of syndromes may have different genetic components. Genetic contributions to fractures and fragility in elderly persons in comparison with younger individuals distinguish age-related osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bonjour JP, Theintz G, Law F, Slosman D, Rizzoli R. Peak bone mass. Osteoporos Int 1994;4(Suppl 1):7–13.

    Article  PubMed  Google Scholar 

  2. Riggs BL, Khosla S, Melton LJ. A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J Bone Miner Res 1998;13: 763–773.

    Article  CAS  PubMed  Google Scholar 

  3. Melton LJ III, Atkinson EJ, O'Connor MK, O'Fallon WM, Riggs BL. Determinants of bone loss from the femoral neck in women of different ages. J Bone Miner Res 2000;15(1):24–31.

    Google Scholar 

  4. Hannan MT, Felson DT, Dawson-Hughes B, et al. Risk factors for longitudinal bone loss in elderly men and women: the Framingham Osteoporosis Study. J Bone Miner Res 200;15(4):710–720.

    Article  Google Scholar 

  5. Burger H, de Laet CE, van Daele PL, et al. Risk factors for increased bone loss in an elderly population: the Rotterdam Study. Am J Epidemiol 1998;147(9):871–879.

    CAS  PubMed  Google Scholar 

  6. Bone health and osteoporosis: a report of the surgeon general. U.S. Department of Health and Human Services, Office of the Surgeon General, Rockville, MD, 2004.

    Google Scholar 

  7. Schulze TG, McMahon FJ. Defining the phenotype in human genetic studies: forward genetics and reverse phenotyping. Hum Hered 2004;58(3–4):131–138.

    Article  PubMed  Google Scholar 

  8. Pan WH, Lynn KS, Chen CH, Wu YL, Lin CY, Chang HY. Using endophenotypes for pathway clusters to map complex disease genes. Genet Epidemiol 2006;30(2):143–154. 9. Havill LM, Bredbenner TL, Mahaney MC, Nicolella DP. Normal variation in cross-sectional geometry of the femoral midshaft in baboons is heritable and is associated with ANKH expression. J Bone Min Res 2006;21(Suppl 1):S239.

    Article  PubMed  Google Scholar 

  9. Havill LM, Bredbenner TL, Mahaney MC, Nicolella DP. Normal variation in cross-sectional geometry of the femoral midshaft in baboons is heritable and is associated with ANKH expression. J Bone Min Res 2006;21(Suppl 1):S239.

    Article  Google Scholar 

  10. Livshits G, Yakovenko C, Kobyliansky E. Quantitative genetic analysis of circulating levels of biochemical markers of bone formation. Am J Med Genet 2000;94(4):324–331.

    Article  CAS  PubMed  Google Scholar 

  11. Otremski I, Karasik D, Livshits, G. Genetic variation and covariation of parathyroid hormone levels and bone density in human population. Calcif Tissue Int 2000;66:168–175.

    Article  CAS  PubMed  Google Scholar 

  12. Karasik D, Cupples LA, Hannan MT, Kiel DP. Genome screen for a combined bone phenotype using principal component analysis: the Framing-ham study. Bone 2004;34(3):547–556.

    Article  CAS  PubMed  Google Scholar 

  13. Kanis JA, Oden A, Johnell O, De Laet C, Jonsson B. Excess mortality after hospitalisation for vertebral fracture. Osteoporos Int 2004;15(2):108–112.

    Article  PubMed  Google Scholar 

  14. Deng HW, Chen WM, Recker S, et al. Genetic determination of Colles' fracture and differential bone mass in women with and without Colles' fracture. J Bone Miner Res 2000;15(7):1243–1252.

    Article  CAS  PubMed  Google Scholar 

  15. Deng HW, Mahaney MC, Williams JT, et al. Relevance of the genes for bone mass variation to susceptibility to osteoporotic fractures and its implications to gene search for complex human diseases. Genet Epidemiol 2002;22(1):12–25.

    Article  PubMed  Google Scholar 

  16. Michaelsson K, Melhus H, Ferm H, Ahlbom A, Pedersen NL. Genetic liability to fractures in the elderly. Arch Intern Med 2005;165(16):1825– 1830.

    Article  Google Scholar 

  17. Kannus P, Palvanen M, Kaprio J, Parkkari J, Koskenvuo M. Genetic factors and osteoporotic fractures in elderly people: prospective 25 year follow up of a nationwide cohort of elderly Finnish twins. BMJ 1999;319(7221):1334–1337.

    CAS  PubMed  Google Scholar 

  18. Ferrari S. Osteoporosis: A Complex Disorder of Aging with Multiple Genetic and Environmental Determinants. In: Nutrition and Fitness: Mental Health, Aging, and the Implementation of a Healthy Diet and Physical Activity Lifestyle, vol. 95. Basel: Karger, 2005, pp 35–51.

    Chapter  Google Scholar 

  19. Orwoll ES, Klein RF. Osteoporosis in men. Endocr Rev 1995;16(1):87–116.

    CAS  PubMed  Google Scholar 

  20. Smith R, Walker R. Femoral expansion in aging women: implications for osteoporosis and fractures. Science 1994;145:156–157.

    Article  Google Scholar 

  21. Ruff CB, Hayes WC. Subperiosteal expansion and cortical remodeling of the human femur and tibia with aging. Science 1982;217(4563):945–948.

    Article  CAS  PubMed  Google Scholar 

  22. Ruff CB, Hayes WC. Sex differences in age-related remodeling of the femur and tibia. J Orthop Res 1988;6:886–896.

    Article  CAS  PubMed  Google Scholar 

  23. Beck TJ, Ruff CB, Bissessur K. Age-related changes in female femoral neck geometry: implications for bone strength. Calcif Tissue Int 1993;53(Suppl 1): S41–S46.

    Article  PubMed  Google Scholar 

  24. Seeman E. From density to structure: growing up and growing old on the surfaces of bone. J Bone Miner Res 1997;12(4):509–521.

    Article  CAS  PubMed  Google Scholar 

  25. Duan Y, Turner CH, Kim BT, Seeman E. Sexual dimorphism in vertebral fragility is more the result of gender differences in age-related bone gain than bone loss. J Bone Miner Res 2001; 16(12):2267–2275.

    Article  Google Scholar 

  26. Kaptoge S, Dalzell N, Loveridge N, Beck TJ, Khaw KT, Reeve J. Effects of gender, anthropometric variables, and aging on the evolution of hip strength in men and women aged over 65. Bone 2003;32(5):561–570.

    Article  PubMed  Google Scholar 

  27. Riggs BL, Melton LJ III, Robb RA, et al. Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res 2004;19(12):1945–1954.

    Article  PubMed  Google Scholar 

  28. Deng HW, Chen WM, Conway T, et al. Determination of bone mineral density of the hip and spine in human pedigrees by genetic and lifestyle factors. Genet Epidemiol 2002;19(2):160– 177.

    Google Scholar 

  29. Brown MA. Genetic studies of osteoporosis–a rethink required. Calcif Tissue Int 2005;76(5):319–325.

    Article  CAS  PubMed  Google Scholar 

  30. Rivadeneira F, Houwing-Duistermaat JJ, Vaessen N, et al. Association between an insulin-like growth factor I gene promoter polymorphism and bone mineral density in the elderly: the Rotterdam Study. J Clin Endocrinol Metab 2003;88(8):3878–84.

    Article  CAS  PubMed  Google Scholar 

  31. Ioannidis JP, Stavrou I, Trikalinos TA, et al. Association of polymorphisms of the estrogen receptor alpha gene with bone mineral density and fracture risk in women: a meta-analysis. J Bone Miner Res 2002;17(11):2048–2060.

    Article  CAS  PubMed  Google Scholar 

  32. Mann V, Hobson EE, Li B, et al. A COL1A1 Sp1 binding site polymorphism predisposes to osteo-porotic fracture by affecting bone density and quality. J Clin Invest 2001;107(7):899–907.

    Article  CAS  PubMed  Google Scholar 

  33. Rivadeneira F, Houwing-Duistermaat JJ, Beck TJ, et al. The influence of an insulin-like growth factor I gene promoter polymorphism on hip bone geometry and the risk of nonvertebral fracture in the elderly: the Rotterdam Study. J Bone Miner Res 2004;19(8):1280–1290.

    Article  CAS  PubMed  Google Scholar 

  34. Grant SF, Reid DM, Blake G, Herd R, Fogelman I, Ralston SH. Reduced bone density and osteoporosis associated with a polymorphic Sp1 binding site in the collagen type I alpha 1 gene. Nat Genet 1996;14(2):203–205.

    Article  CAS  PubMed  Google Scholar 

  35. Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures [see comments]. BMJ 1996;312(7041):1254–1259.

    CAS  PubMed  Google Scholar 

  36. Cummings SR, Melton LJ. Epidemiology and outcomes of osteoporotic fractures. Lancet 2002; 359(9319):1761–1767.

    Article  PubMed  Google Scholar 

  37. Zmuda JM, Cauley JA, Ferrell RE. Recent progress in understanding the genetic susceptibility to osteoporosis. Genet Epidemiol 1999;16(4):356– 367.

    Article  CAS  PubMed  Google Scholar 

  38. Nguyen TV, Blangero J, Eisman JA. Genetic epidemiological approaches to the search for osteoporosis genes. J Bone Miner Res 2000;15: 392–401.

    Article  CAS  PubMed  Google Scholar 

  39. Klein R, Mitchell S, Phillips T, Belknap J, Orwoll E. Quantitative trait loci affecting peak bone mineral density in mice. J Bone Miner Res 1998;13:1648–1656.

    Google Scholar 

  40. Beamer WG, Shultz KL, Donahue LR, et al. Quantitative trait loci for femoral and lumbar vertebral bone mineral density in C57BL/6J and C3H/HeJ inbred strains of mice. J Bone Miner Res 2001; 16(7):1195–206.

    Article  CAS  PubMed  Google Scholar 

  41. Benes H, Weinstein R, Zheng W, et al. Chromosomal mapping of osteopenia-associated quantitative trait loci using closely related mouse strains. J Bone Miner Res 2000;15:626–633.

    Article  CAS  PubMed  Google Scholar 

  42. Devoto M, Shimoya K, Caminis J, et al. First-stage autosomal genome screen in extended pedigrees suggests genes predisposing to low bone mineral density on chromosomes 1p, 2p and 4q. Eur J Hum Genet 1998;6:151–157.

    Article  CAS  PubMed  Google Scholar 

  43. Koller DL, Econs MJ, Morin PA, et al. Genome screen for QTLs contributing to normal variation in bone mineral density and osteoporosis. J Clin Endocrinol Metab 2000;85(9):3116–3120.

    Article  CAS  PubMed  Google Scholar 

  44. Karasik D, Myers RH, Cupples LA, et al. Genome screen for quantitative trait loci contributing to normal variation in bone mineral density: the Framingham Study. J Bone Miner Res 2002; 17(9):1718–1727.

    Article  Google Scholar 

  45. Ioannidis J, Ng MY, Sham PC, et al. Meta-analysis of genome wide scans provides evidence for gender and site specific regulation of bone mass. J Bone Min Res 2007;22(2):173–183.

    Article  CAS  Google Scholar 

  46. Mitchell BD, Kammerer CM, Schneider JL, Perez R, Bauer RL. Genetic and environmental determinants of bone mineral density in Mexican Americans: results from the San Antonio Family Osteoporosis Study. Bone 2003;33(5):839–846.

    Article  PubMed  Google Scholar 

  47. Baudoin C, Cohen-Solal ME, Beaudreuil J, De Vernejoul MC. Genetic and environmental factors affect bone density variances of families of men and women with osteoporosis. J Clin Endocrinol Metab 2002;87(5):2053–2059.

    Article  CAS  PubMed  Google Scholar 

  48. Karasik D, Cupples LA, Hannan MT, Kiel DP. Age, gender, and body mass effects on quantitative trait loci for bone mineral density: the Framing-ham study. Bone 2003;33(3):308–316.

    Article  CAS  PubMed  Google Scholar 

  49. Ralston SH, Galwey N, MacKay I, et al. Loci for regulation of bone mineral density in men and women identified by genome wide linkage scan: the FAMOS study. Hum Mol Genet 2005;14(7):943–951.

    Article  CAS  PubMed  Google Scholar 

  50. Streeten EA, McBride DJ, Pollin TI, et al. Quantitative trait loci for BMD identified by autosome-wide linkage scan to chromosomes 7q and 21q in men from the Amish Family Osteoporosis Study. J Bone Miner Res 2006;21(9):1433–1442.

    Article  PubMed  Google Scholar 

  51. Yang TL, Zhao LJ, Liu YJ, Liu JF, Recker RR, Deng HW. Genetic and environmental correlations of bone mineral density at different skeletal sites in females and males. Calcif Tissue Int 2006;78(4):212–217.

    Article  CAS  PubMed  Google Scholar 

  52. Harris M, Nguyen TV, Howard GM, Kelly PJ, Eisman JA. Genetic and environmental correlations between bone formation and bone mineral density: a twin study. Bone 1998;22(2):141–145.

    Article  CAS  PubMed  Google Scholar 

  53. Szumska D, Benes H, Kang P, et al. A novel locus on the X chromosome regulates post-maturity bone density changes in mice. Bone 2007;40(3):758–766.

    Article  CAS  PubMed  Google Scholar 

  54. Kelly PJ, Nguyen T, Hopper J, Pocock N, Sambrook P, Eisman J. Changes in axial bone density with age: a twin study. J Bone Miner Res 1993;8(1):11–17.

    Article  CAS  PubMed  Google Scholar 

  55. Christian JC, Yu PL, Slemenda CW, Johnston CC Jr. Heritability of bone mass: a longitudinal study in aging male twins. Am J Hum Genet 1989;44(3):429–433.

    CAS  PubMed  Google Scholar 

  56. Wynne F, Drummond FJ, Daly M, et al. Suggestive linkage of 2p22–25 and 11q12–13 with low bone mineral density at the lumbar spine in the Irish population. Calcif Tissue Int 2003;72(6):651–658.

    Article  CAS  PubMed  Google Scholar 

  57. Khosla S, Riggs BL, Atkinson EJ, et al. Relationship of estrogen receptor genotypes to bone mineral density and to rates of bone loss in men. J Clin Endocrinol Metab 2004;89(4):1808–1816.

    Article  CAS  PubMed  Google Scholar 

  58. Salmen T, Heikkinen AM, Mahonen A, et al. Early postmenopausal bone loss is associated with PvuII estrogen receptor gene polymorphism in Finnish women: effect of hormone replacement therapy. J Bone Miner Res 2000;15(2):315–321.

    Article  CAS  PubMed  Google Scholar 

  59. Recker R, Lappe J, Davies K, Heaney R. Characterization of perimenopausal bone loss: a prospective study. J Bone Miner Res 2000;15(10):1965–1973.

    Article  CAS  PubMed  Google Scholar 

  60. Khosla S, Riggs BL, Atkinson EJ, et al. Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment. J Bone Miner Res 2006;21(1):124–131.

    Article  PubMed  Google Scholar 

  61. Khosla S, Melton LJ III, Atkinson EJ, O'Fallon WM. Relationship of serum sex steroid levels to longitudinal changes in bone density in young versus elderly men. J Clin Endocrinol Metab 2001;86(8):3555–3561.

    Article  CAS  PubMed  Google Scholar 

  62. Parsons CA, Mroczkowski HJ, McGuigan FE, et al. Interspecies synteny mapping identifies a quantitative trait locus for bone mineral density on human chromosome Xp22. Hum Mol Genet 2005;14(21):3141–3148.

    Article  CAS  PubMed  Google Scholar 

  63. Manolagas SC, Jilka RL. Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N Engl J Med 1995;332(5):305–311.

    CAS  Google Scholar 

  64. Moffett SP, Zmuda JM, Oakley JI, et al. Tumor necrosis factor-alpha polymorphism, bone strength phenotypes, and the risk of fracture in older women. J Clin Endocrinol Metab 2005; 90(6):3491–3497.

    Article  CAS  Google Scholar 

  65. Murray RE, McGuigan F, Grant SF, Reid DM, Ralston SH. Polymorphisms of the interleukin-6 gene are associated with bone mineral density. Bone 1997;21(1):89–92.

    Article  CAS  PubMed  Google Scholar 

  66. Tsukamoto K, Yoshida H, Watanabe S, et al. Association of radial bone mineral density with CA repeat polymorphism at the interleukin 6 locus in postmenopausal Japanese women. J Hum Genet 1999;44(3):148–151.

    Article  CAS  PubMed  Google Scholar 

  67. Duncan EL, Brown MA, Sinsheimer J, et al. Suggestive linkage of the parathyroid receptor type 1 to osteoporosis [see comments]. J Bone Miner Res 1999;14(12):1993–1999.

    Article  CAS  PubMed  Google Scholar 

  68. Hamanaka Y, Yamamoto I, Takada M, et al. Comparison of bone mineral density at various skeletal sites with quantitative ultrasound parameters of the calcaneus for assessment of vertebral fractures. J Bone Miner Metab 1999;17(3):195–200.

    Article  CAS  PubMed  Google Scholar 

  69. Lakatos P, Foldes J, Nagy Z, et al. Serum insulinlike growth factor-I, insulin-like growth factor binding proteins, and bone mineral content in hyperthyroidism. Thyroid 2000;10:417–423.

    Article  CAS  PubMed  Google Scholar 

  70. Takacs I, Koller DL, Peacock M, et al. Sibling pair linkage and association studies between bone mineral density and the insulin-like growth factor I gene locus. J Clin Endocrinol Metab 1999; 84(12):4467–4471.

    Article  CAS  PubMed  Google Scholar 

  71. Ferrari SL, Karasik D, Liu J, et al. Interactions of interleukin-6 promoter polymorphisms with dietary and lifestyle factors and their association with bone mass in men and women from the framingham osteoporosis study. J Bone Miner Res 2004;19(4):552–559.

    Article  CAS  PubMed  Google Scholar 

  72. Rea IM, Ross OA, Armstrong M, et al. Interleukin-6-gene C/G 174 polymorphism in nonagenarian and octogenarian subjects in the BELFAST study. Reciprocal effects on IL-6, soluble IL-6 receptor and for IL-10 in serum and monocyte supernatants. Mech Ageing Dev 2003;124(4):555– 561.

    Article  CAS  Google Scholar 

  73. Nordstrom A, Gerdhem P, Brandstrom H, et al. Interleukin-6 promoter polymorphism is associated with bone quality assessed by calcaneus ultrasound and previous fractures in a cohort of 75-year-old women. Osteoporos Int 2004;15(10):820–826.

    Article  PubMed  Google Scholar 

  74. Scheidt-Nave CE, Bismar H, Leidug-Bruckner G, Seibel MJ, Ziegler R, Pfeilschifter J. Serum inter-leukin-6 is a major predictor of bone loss in women specific to the first decade past menopause. J Bone Min Res 1999;14 (Suppl 1):S147.

    Google Scholar 

  75. Morrison NA, Qi JC, Tokita A, et al. Prediction of bone density from vitamin D receptor alleles [see comments] [published erratum appears in Nature 1997 May 1;387(6628):106]. Nature 1994;367(6460):284–287.

    Article  CAS  PubMed  Google Scholar 

  76. Gross C, Eccleshall TR, Malloy PJ, Villa ML, Marcus R, Feldman D. The presence of a polymorphism at the translation initiation site of the vitamin D receptor gene is associated with low bone mineral density in postmenopausal Mexican-American women [see comments]. J Bone Miner Res 1996;11(12):1850–1855.

    CAS  PubMed  Google Scholar 

  77. Hustmyer FG, Peacock M, Hui S, Johnston CC, Christian J. Bone mineral density in relation to polymorphism at the vitamin D receptor gene locus. J Clin Invest 1994;94(5):2130–2134.

    Article  CAS  PubMed  Google Scholar 

  78. Eccleshall TR, Garnero P, Gross C, Delmas PD, Feldman D. Lack of correlation between start codon polymorphism of the vitamin D receptor gene and bone mineral density in premenopausal French women: the OFELY study. J Bone Miner Res 1998;13(1):31–35.

    Article  CAS  PubMed  Google Scholar 

  79. Garnero P, Borel O, Sornay-Rendu E, Delmas PD. Vitamin D receptor gene polymorphisms do not predict bone turnover and bone mass in healthy premenopausal women. J Bone Miner Res 1995; 10(9):1283–1288.

    Article  Google Scholar 

  80. Garnero P, Borel O, Sornay-Rendu E, Arlot ME, Delmas PD. Vitamin D receptor gene polymorphisms are not related to bone turnover, rate of bone loss, and bone mass in postmenopausal women: the OFELY Study. J Bone Miner Res 1996;11(6):827–834.

    CAS  PubMed  Google Scholar 

  81. Houston LA, Grant SF, Reid DM, Ralston SH. Vitamin D receptor polymorphism, bone mineral density, and osteoporotic vertebral fracture: studies in a UK population. Bone 1996;18(3):249–252.

    Article  CAS  PubMed  Google Scholar 

  82. Jorgensen HL, Scholler J, Sand JC, Bjuring M, Hassager C, Christiansen C. Relation of common allelic variation at vitamin D receptor locus to bone mineral density and postmenopausal bone loss: cross sectional and longitudinal population study. BMJ 1996;313(7057):586–590.

    CAS  PubMed  Google Scholar 

  83. Vandevyver C, Vanhoof J, Declerck K, et al. Lack of association between estrogen receptor genotypes and bone mineral density, fracture history, or muscle strength in elderly women. J Bone Miner Res 1999;14(9):1576–1582.

    Article  CAS  PubMed  Google Scholar 

  84. Ferrari S, Rizzoli R, Slosman D, Bonjour JP. Familial resemblance for bone mineral mass is expressed before puberty. J Clin Endocrinol Metab 1998;83(2):358–361.

    Article  CAS  PubMed  Google Scholar 

  85. Gennari L, Becherini L, Masi L, et al. Vitamin D and estrogen receptor allelic variants in Italian postmenopausal women: evidence of multiple gene contribution to bone mineral density. J Clin Endocrinol Metab 1998;83(3):939–944.

    Article  CAS  PubMed  Google Scholar 

  86. Salamone LM, Ferrell R, Black DM, et al. The association between vitamin D receptor gene polymorphisms and bone mineral density at the spine, hip and whole-body in premenopausal women [published erratum appears in Osteoporos Int 1996;6(3):187–8]. Osteoporos Int 1996;6(1):63– 68.

    Google Scholar 

  87. Uitterlinden AG, Pols HA, Burger H, et al. A large-scale population-based study of the association of vitamin D receptor gene polymorphisms with bone mineral density. J Bone Miner Res 1996; 11(9):1241–1248.

    Google Scholar 

  88. Langdahl BL, Lokke E, Carstens M, Stenkjaer LL, Eriksen EF. A TA repeat polymorphism in the estrogen receptor gene is associated with osteopo-rotic fractures but polymorphisms in the first exon and intron are not. J Bone Miner Res 2000;15(11):2222–2230.

    Article  CAS  PubMed  Google Scholar 

  89. Riggs BL, Nguyen TV, Melton LJ III, et al. The contribution of vitamin D receptor gene alleles to the determination of bone mineral density in normal and osteoporotic women. J Bone Miner Res 1995;10(6):991–996.

    CAS  PubMed  Google Scholar 

  90. Morita A, Iki M, Dohi Y, et al. Prediction of bone mineral density from vitamin D receptor polymorphisms is uncertain in representative samples of Japanese Women. The Japanese Population-based Osteoporosis (JPOS) Study. Int J Epidemiol 2004;33(5):979–988.

    Google Scholar 

  91. Thakkinstian A, D'Este C, Eisman J, Nguyen T, Attia J. Meta-analysis of molecular association studies: vitamin D receptor gene polymorphisms and BMD as a case study. J Bone Miner Res 2004;19(3):419–428.

    Article  CAS  PubMed  Google Scholar 

  92. Bischoff-Ferrari HA, Borchers M, Gudat F, Durmuller U, Stahelin HB, Dick W. Vitamin D receptor expression in human muscle tissue decreases with age. J Bone Miner Res 2004;19(2):265–269.

    Article  CAS  PubMed  Google Scholar 

  93. Cummings SR, Browner WS, Bauer D, et al. Endogenous hormones and the risk of hip and vertebral fractures among older women. Study of Osteoporotic Fractures Research Group [see comments]. N Engl J Med 1998;339(11):733–738.

    Article  CAS  PubMed  Google Scholar 

  94. Rizzoli R, Bonjour JP. Hormones and bones. Lancet 1997;349 (Suppl 1):SI20–S123.

    PubMed  Google Scholar 

  95. Carani C, Qin K, Simoni M, et al. Effect of testosterone and estradiol in a man with aromatase deficiency. N Engl J Med 1997;337(2):91–95.

    Article  CAS  PubMed  Google Scholar 

  96. Amin S, Zhang Y, Sawin CT, et al. Association of hypogonadism and estradiol levels with bone mineral density in elderly men from the Framing-ham study. Ann Intern Med 2000;133(12):951– 963.

    Google Scholar 

  97. Willing M, Sowers M, Aron D, et al. Bone mineral density and its change in white women: estrogen and vitamin D receptor genotypes and their interaction. J Bone Miner Res 1998;13(4):695–705.

    Article  CAS  PubMed  Google Scholar 

  98. Deng HW, Li J, Li JL, Johnson M, Gong G, Recker RR. Association of VDR and estrogen receptor genotypes with bone mass in postmenopausal Caucasian women: different conclusions with different analyses and the implications. Osteopo-ros Int 1999;9(6):499–507.

    CAS  Google Scholar 

  99. Becherini L, Gennari L, Masi L, et al. Evidence of a linkage disequilibrium between polymorphisms in the human estrogen receptor alpha gene and their relationship to bone mass variation in post-menopausal Italian women. Hum Mol Genet 2000;9(13):2043–2050.

    Article  CAS  PubMed  Google Scholar 

  100. Albagha OM, McGuigan FE, Reid DM, Ralston SH. Estrogen receptor alpha gene polymorphisms and bone mineral density: haplotype analysis in women from the United Kingdom. J Bone Miner Res 2001;16(1):128–134.

    Article  CAS  PubMed  Google Scholar 

  101. Bagger YZ, Jorgensen HL, Heegaard AM, Bayer L, Hansen L, Hassager C. No major effect of estrogen receptor gene polymorphisms on bone mineral density or bone loss in postmenopausal Danish women. Bone 2000;26(2):111–116.

    Article  CAS  PubMed  Google Scholar 

  102. van Meurs JB, Schuit SC, Weel AE, et al. Association of 5′ estrogen receptor alpha gene polymorphisms with bone mineral density, vertebral bone area and fracture risk. Hum Mol Genet 2003; 12(14):1745–1754.

    Article  CAS  Google Scholar 

  103. Ioannidis JP, Ralston SH, Bennett ST, et al. Differential genetic effects of ESR1 gene polymorphisms on osteoporosis outcomes. JAMA 2004; 292(17):2105–2114.

    Article  Google Scholar 

  104. Han KO, Moon IG, Kang YS, Chung HY, Min HK, Han IK. Nonassociation of estrogen receptor genotypes with bone mineral density and estrogen responsiveness to hormone replacement therapy in Korean postmenopausal women [see comments]. J Clin Endocrinol Metab 1997;82(4):991–995.

    Article  CAS  PubMed  Google Scholar 

  105. Hey PJ, Twells RC, Phillips MS, et al. Cloning of a novel member of the low-density lipoprotein receptor family. Gene 1998;216(1):103–111.

    Article  CAS  PubMed  Google Scholar 

  106. Gong Y, Slee RB, Fukai N, et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 2001;107(4):513–523.

    Article  CAS  PubMed  Google Scholar 

  107. Little RD, Carulli JP, Del Mastro RG, et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet 2002;70(1):11–19.

    Article  CAS  PubMed  Google Scholar 

  108. Boyden LM, Mao J, Belsky J, et al. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 2002;346(20):1513–1521.

    Article  CAS  PubMed  Google Scholar 

  109. Van Wesenbeeck L, Cleiren E, Gram J, et al. Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density. Am J Hum Genet 2003;72(3):763–771.

    Article  PubMed  Google Scholar 

  110. Ferrari SL, Deutsch S, Baudoin C, et al. LRP5 gene polymorphisms and idiopathic osteoporosis in men. Bone 2005;37(6):770–775.

    Article  CAS  PubMed  Google Scholar 

  111. Ferrari SL, Deutsch S, Choudhury U, et al. Polymorphisms in the low-density lipoprotein receptor-related protein 5 (LRP5) gene are as sociated with variation in vertebral bone mass, vertebral bone size, and stature in whites. Am J Hum Genet 2004;74(5):866–875.

    Article  CAS  PubMed  Google Scholar 

  112. Kiel D, Ferrari S, Cupples LA, et al. Genetic variation at the low density lipoprotein receptor-related protein 5 (LRP5) locus modulates Wnt signaling and the relationship of physical activity with bone mineral density in men. Bone 2007;40(3):587– 596.

    Article  CAS  Google Scholar 

  113. Pluijm SM, Dik MG, Jonker C, Deeg DJ, van Kamp GJ, Lips P. Effects of gender and age on the association of apolipoprotein E epsilon4 with bone mineral density, bone turnover and the risk of fractures in older people. Osteoporos Int 2002; 13(9):701–709.

    Article  Google Scholar 

  114. Goseki-Sone M, Sogabe N, Fukushi-Irie M, et al. Functional analysis of the single nucleotide polymorphism (787T>C) in the tissue-nonspecific alkaline phosphatase gene associated with BMD. J Bone Miner Res 2005;20(5):773–782.

    Article  CAS  PubMed  Google Scholar 

  115. Uitterlinden AG, Arp PP, Paeper BW, et al. Polymorphisms in the sclerosteosis/van Buchem disease gene (SOST) region are associated with bone-mineral density in elderly whites. Am J Hum Genet 2004;75(6):1032–1045.

    Article  CAS  PubMed  Google Scholar 

  116. Balemans W, Foernzler D, Parsons C, et al. Lack of association between the SOST gene and bone mineral density in perimenopausal women: analysis of five polymorphisms. Bone 2002;31 (4):515–519.

    Article  CAS  PubMed  Google Scholar 

  117. Ralston SH, de Crombrugghe B. Genetic regulation of bone mass and susceptibility to osteoporosis. Genes Dev 2006;20(18):2492–2506.

    Article  CAS  PubMed  Google Scholar 

  118. Boskey AL, DiCarlo E, Paschalis E, West P, Mendelsohn R. Comparison of mineral quality and quantity in iliac crest biopsies from high- and low-turnover osteoporosis: an FT-IR microspectro-scopic investigation. Osteoporos Int 2005;16(12):2031–2038.

    Article  CAS  PubMed  Google Scholar 

  119. Melton LJ III, Riggs BL, Achenbach SJ, et al. Does reduced skeletal loading account for age-related bone loss? J Bone Miner Res 2006;21(12):1847– 1855.

    Article  PubMed  Google Scholar 

  120. Gilsanz V, Wren TA, Sanchez M, Dorey F, Judex S, Rubin C. Low-level, high-frequency mechanical signals enhance musculoskeletal development of young women with low BMD. J Bone Miner Res 2006;21(9):1464–1474.

    Article  PubMed  Google Scholar 

  121. Kuro-o M, Matsumura Y, Aizawa H, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997;390(6655):45–51.

    Article  CAS  PubMed  Google Scholar 

  122. Karasik D, Hannan MT, Cupples LA, Felson DT, Kiel DP. Genetic contribution to biological aging: the Framingham Study. J Gerontol A Biol Sci Med Sci 2004;59(3):218–226.

    PubMed  Google Scholar 

  123. Karasik D, Yakovenko K, Barakh I, et al. Comparative analysis of age prediction by markers of bone change in the hand as assessed by roentgen-ography. Am J Hum Biol 1999;11:31–44.

    Article  PubMed  Google Scholar 

  124. Karasik D, Demissie S, Cupples LA, Kiel DP. Disentangling the genetic determinants of human aging: biological age as an alternative to the use of survival measures. J Gerontol A Biol Sci Med Sci 2005;60(5):574–587.

    PubMed  Google Scholar 

  125. Ferrari SL, Ahn-Luong L, Garnero P, Humphries SE, Greenspan SL. Two promoter polymorphisms regulating interleukin-6 gene expression are associated with circulating levels of C-reactive protein and markers of bone resorption in post-menopausal women. J Clin Endocrinol Metab 2003;88(1):255–259.

    Article  CAS  PubMed  Google Scholar 

  126. Baldini V, Mastropasqua M, Francucci CM, D'Erasmo E. Cardiovascular disease and osteoporosis. J Endocrinol Invest 2005;28(10 Suppl): 69–72.

    CAS  PubMed  Google Scholar 

  127. Weitzmann MN, Pacifici R. Estrogen deficiency and bone loss: an inflammatory tale. J Clin Invest 2006;116(5):1186–1194.

    Article  CAS  PubMed  Google Scholar 

  128. Raisz LG. Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest 2005; 115(12):3318–3325.

    Article  CAS  Google Scholar 

  129. Urano T, Shiraki M, Fujita M, et al. Association of a single nucleotide polymorphism in the lipoxy-genase ALOX15 5′-flanking region (-5229G/A) with bone mineral density. J Bone Miner Metab 2005;23(3):226–230.

    Article  CAS  PubMed  Google Scholar 

  130. Yamada Y. Association of polymorphisms of the transforming growth factor-beta1 gene with genetic susceptibility to osteoporosis. Pharmaco-genetics 2001;11(9):765–771.

    CAS  Google Scholar 

  131. Yamada Y, Miyauchi A, Takagi Y, Tanaka M, Mizuno M, Harada A. Association of the C-509–T polymorphism, alone of in combination with the T869–>C polymorphism, of the transforming growth factor-beta1 gene with bone mineral density and genetic susceptibility to osteoporosis in Japanese women. J Mol Med 2001;79(2–3):149–156.

    Article  CAS  PubMed  Google Scholar 

  132. Giresi PG, Stevenson EJ, Theilhaber J, et al. Iden-tification of a molecular signature of sarcopenia. Physiol Genomics 2005;21(2):253–263.

    Article  CAS  PubMed  Google Scholar 

  133. Zahn JM, Sonu R, Vogel H, et al. Transcriptional profiling of aging in human muscle reveals a common aging signature. PLoS Genet 2006;2(7): e115.

    Article  PubMed  CAS  Google Scholar 

  134. Justesen J, Stenderup K, Eriksen EF, Kassem M. Maintenance of osteoblastic and adipocytic differentiation potential with age and osteoporosis in human marrow stromal cell cultures. Calcif Tissue Int 2002;71(1):36–44.

    Article  CAS  PubMed  Google Scholar 

  135. Meyer RA Jr, Desai BR, Heiner DE, Fiechtl J, Porter S, Meyer MH. Young, adult, and old rats have similar changes in mRNA expression of many skeletal genes after fracture despite delayed healing with age. J Orthop Res 2006;24(10):1933–1944.

    Article  CAS  PubMed  Google Scholar 

  136. Holtzman NA, Marteau TM. Will genetics revolutionize medicine? N Engl J Med 2000;343(2):141–144.

    Article  CAS  PubMed  Google Scholar 

  137. Khoury MJ, McCabe LL, McCabe ER. Population screening in the age of genomic medicine. N Engl J Med 2003;348(1):50–58.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Karasik, D., Kiel, D.P. (2009). Genetics of Osteoporosis in Older Age. In: Duque, G., Kiel, D.P. (eds) Osteoporosis in Older Persons. Springer, London. https://doi.org/10.1007/978-1-84628-697-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-697-1_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-515-8

  • Online ISBN: 978-1-84628-697-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics