Skip to main content

Estimating Photometric Redshifts Using Genetic Algorithms

  • Conference paper
Applications and Innovations in Intelligent Systems XIV (SGAI 2006)

Abstract

Photometry is used as a cheap and easy way to estimate redshifts of galaxies, which would otherwise require considerable amounts of expensive telescope time. However, the analysis of photometric redshift datasets is a task where it is sometimes difficultto achievea high classification accuracy. This work presents a custom Genetic Algorithm (GA) for mining the Hubble Deep Field North (HDF-N) datasets to achieve accurate IF-THEN classification rules. This kind of knowledge representation has the advantage of being intuitively comprehensible to the user, facilitating astronomers’ interpretation of discovered knowledge. The GA is tested againstthe state of the art decision tree algorithm C5.0 [Rulequest, 2005] in two datasets, achieving better classification accuracy and simplerrule sets in both datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Appenzeller, I. FORS consortium; The FORS Deep Field (FDF) [http://www.lsw.uni-heidelberg.de/users/jheidt/fdf/fdf.html], Visited October 2005

    Google Scholar 

  2. Bolnzella, M. et al. Photometric redshifts based on standard SED fitting procedures, Astron. Astrophys. 363, 476–492, 2000

    Google Scholar 

  3. Bowman, B. et al. Reasoning about naming systems. ACM Trans. Program. Lang. Syst., 15, 5 (Nov. 1993), 795–825, 1993.

    Article  MathSciNet  Google Scholar 

  4. Collister, A. A., Lahav, O. ANNz: estimating photometric redshifts using artificial neural networks, astro-ph, 0311058, 2003

    Google Scholar 

  5. Connolly, A.J. et al, Slicing Through Multicolor Space: Galaxy Redshifts from Broadband Photometry, astro-ph/9508100, 1995

    Google Scholar 

  6. Cowie L.L. et al. A large sample of spectroscopic redshifts in the ACS-GOODS region of the HDF-N, astro-ph/0401354, 2004

    Google Scholar 

  7. D’Odorico et al. European Space Agency; The NTT SUSI Deep Field [http://www.eso.org/science/ndf/], Visited October 2005

    Google Scholar 

  8. Daddi et al., The Population of BzK Selected ULIRGs at z≈2, astro-ph/0507504vl, 2005

    Google Scholar 

  9. Daddi et al., Star-formingand Passive Galaxies, ApJ, 617, 746, 2004

    Article  Google Scholar 

  10. Ding, W., Marchionini, G. A Study on Video Browsing Strategies. Technical Report UMIACS-TR-97-40, University of Maryland, College Park, MD, 1997.

    Google Scholar 

  11. ESO Education & Public Relations Department. Deep Galaxy Counts and Photometric Redshifts in the HDF-S NIC3 Field [http://www.eso.org/outreach/press-rel/pr-1998/pr-20-98.html], 1998, Visited on 15 August 2004

    Google Scholar 

  12. ESO Education & Public Relations Department. The FORS/ISAAC Cluster Deep Field [http://www.eso.org/outreach/press-rel/pr-1999/phot-0999. html], 1999, Visited on 15 August 2004

    Google Scholar 

  13. Falkenauer E., The Worth of the Uniform, CEC-99, 1999

    Google Scholar 

  14. Fayyad U. M., Chapter 19: Automating the Analysis and Cataloging of Sky Surveys, Advances in Knowledge Discovery and Data Mining, AAAI Press/The MIT Press, 1996

    Google Scholar 

  15. Ferguson H., Space Telescope Science Institute. The Hubble Deep Field [http://www.stscLedu/ftp/science/hdf/hdf.html], Visited October 2005

    Google Scholar 

  16. Femandez-Soto A. et al. A new catalog of photometric redshifts in the Hubble Deep Field, Astrophys. J., 513, 34–50, 1999

    Article  Google Scholar 

  17. Freitas A. Data Mining and Knowledge Discovery with Evolutionary Algorithms, Springer, 2002

    Google Scholar 

  18. Giavalisco M. et al. The Hubble Deep Field: Number Counts, Color-Magnitude and Color-Color Diagrams, 1997

    Google Scholar 

  19. Gwyn, S., The Redshift Distribution and Luminosity Functions, astro-ph/9603149, 1996

    Google Scholar 

  20. Kwedlo W., Kretowski M. An Evolutionary Algorithm Using Multivariate Discretization for Decision Rule Induction, Proceedings of Evolutionary Computations on Principles of Data Mining and Knowledge Discovery (PKDD’00), Springer LNCS 1910, 2000

    Google Scholar 

  21. Kwedlo W., Kretowski M. Discovery of decision rules from databases: an evolutionary approach. Principles of Data Mining and Knowledge Discovery, PKDD’98. Nantes, France. Springer LNCS 1510, 1998

    Google Scholar 

  22. Lahav O. et al. Neural Computation as a tool for galaxy classification: methods and examples, MNRAS, 283, 207L, 1996

    Google Scholar 

  23. Peacock J. A. Cosmological Physics, Cambridge University Press, 1999

    Google Scholar 

  24. Rengelink R. AXAF Field: Deep Optical-Infrared Observations, Data Reduction and Photometry, ESO Imaging Survey, 1998

    Google Scholar 

  25. Rulequest Research. Data Mining Tools See 5 and C5.0 [http://www.rulequest.com/see5-info.html]. 2005, Visited on October 2005

    Google Scholar 

  26. Richmond, M., Photometric Systems and Colors [http://spiff.rit.edu/classes/phys445/lectures/colors/colors.html], Visited on October 2005

    Google Scholar 

  27. Stanway E. R. et al. Lyman Break Galaxies andthe Star Formation Rate of the Universe at z≈6, 2003

    Google Scholar 

  28. Stanek, R., Photometry [http://astrwww.astr.cwru.edu/nassau/reference/photometry.html], CWRU Astronomy Dept, 1999, Visited onOctober 2005

    Google Scholar 

  29. Steidel C. C., Hamilton D. Deep imaging of high redshift QSO fields below the Lyman limit. I — The field of Q0000-263 and galaxies at Z=3.4, AJ, 104, 941–949, 1992

    Article  Google Scholar 

  30. Steidel C. C. et al. Lyman Imaging of High-Redshift Galaxies.IlI.New Observations of Four QSO Fields, AJ, 110, 2519, 1995

    Article  Google Scholar 

  31. Steidel C. C. et al. Spectroscopic Confirmation of a Population of NormalStar-forming Galaxies at redshifts z>3, AJ, 462, L17–L21, 1996

    Article  Google Scholar 

  32. Syswerda G., Uniform Crossover in Genetic Algorithms, ICGA-89, 1989

    Google Scholar 

  33. Wang et al. A Catalog of Color-based Redshift Estimates for Z<≈4 Galaxies in the Hubble Deep Field, AJ 116, 2081, 1998

    Article  Google Scholar 

  34. Williams R. et al. The Hubble Deep Field: Images, 1997

    Google Scholar 

  35. Wirth G. et al. The Team Keck Treasury Redshift Survey of the GOODS-North Field, astro-ph/0401353, 2004

    Google Scholar 

  36. Witten I. H., Frank E. Data Mining — PracticalMachine Learning Tools and Techniques with Java Implementations, Morgan Kaufmann, 2000

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this paper

Cite this paper

Miles, N., Freitas, A., Serjeant, S. (2007). Estimating Photometric Redshifts Using Genetic Algorithms. In: Ellis, R., Allen, T., Tuson, A. (eds) Applications and Innovations in Intelligent Systems XIV. SGAI 2006. Springer, London. https://doi.org/10.1007/978-1-84628-666-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-666-7_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-665-0

  • Online ISBN: 978-1-84628-666-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics