Skip to main content

Redshift and Horizons

  • Chapter
General Relativity

Part of the book series: Springer Undergraduate Mathematics Series ((SUMS))

  • 6147 Accesses

Abstract

When one observer sends light signals to another, the frequency of the light measured at emission by the first observer is generally not the same as that measured at reception by the second. Even in special relativity, the light is redshifted if the second is moving away from the first. This is the Doppler effect. In general relativity, there is a gravitational redshift when both are at rest in the gravitational field of a static spherically symmetric body, and the first is below the second.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. R. Baum and W. Sheehan. In Search of Planet Vulcan: The Ghost in Newton’s Clockwork Universe. Basic, New York (2003).

    Google Scholar 

  2. L. Bod, E. Fischbach, G. Marx, and M. Náry-Ziegler. One hundred years of the Eötvös experiment. Acta Physica Hungarica 69, 335–355 (1991).

    Google Scholar 

  3. H. Bondi. Assumption and Myth in Physical Theory. Cambridge University Press, Cambridge, 1967.

    Google Scholar 

  4. I. B. Cohen. Einstein’s last interview. In: A. Robinson, ed., Einstein, A Hundred Years of Relativity. Palazzo, Bath, 2005.

    Google Scholar 

  5. P. Coles. Einstein, Eddington, and the 1919 eclipse. In: Proceedings of International School on the Historical Development of Modern Cosmology, Valencia2000, V. J. Martinez, V. Trimble, and M. J. Pons-Borderia, eds. ASP Conference Series, San Francisco (2001).

    Google Scholar 

  6. Gravity Probe B. Web site http://einstein.stanford.edu/.

    Google Scholar 

  7. A. Guth. The Inflationary Universe. Jonathan Cape, London (1997).

    Google Scholar 

  8. S. W. Hawking and G. F. R. Ellis. The Large-Scale Structure of Space-Time. Cambridge University Press, Cambridge (1973).

    MATH  Google Scholar 

  9. L. P. Hughston and K. P. Tod. An Introduction to General Relativity. London Mathematical Society Student Texts 5. Cambridge University Press, Cambridge (1990).

    MATH  Google Scholar 

  10. D. W. Jordan and P. Smith. Nonlinear Ordinary Differential Equations: An Introduction to Dynamical Systems. Third edition. Oxford University Press, Oxford (1999).

    MATH  Google Scholar 

  11. R. P. Kerr. Gravitational field of a spinning mass as an example of algebraically special metrics. Physical Review Letters, 11, 237–238 (1963).

    Article  MATH  MathSciNet  Google Scholar 

  12. C. Lämmerzahl and G. Neugebauer. The Lens-Thirring effect: From the basic notions to the observed effects. Lecture Notes in Physics, 562, 31–51 (2001).

    Article  Google Scholar 

  13. LIGO (Laser Interferometer Gravitational Wave Observatory). Web site http://www.ligo.caltech.edu/.

    Google Scholar 

  14. C. W. Misner, K. S. Thorne, and J. A. Wheeler. Gravitation. Freeman, San Francisco (1973).

    Google Scholar 

  15. K. Nordtvedt. On the ‘geodetic’ precession of the lunar orbit. Classical and Quantum Gravity 13, 1317–21 (1996).

    Article  MATH  Google Scholar 

  16. R. V. Pound and G. A. Rebka Jr. Apparent weight of photons. Physical Review Letters, 4, 337 (1960).

    Article  Google Scholar 

  17. R. Penrose and R. M. Floyd. Extraction of rotational energy from a black hole. Nature, 229, 177–9 (1971).

    Google Scholar 

  18. R. Penrose. The Road to Reality. Jonathan Cape, London (2004).

    Google Scholar 

  19. R. Penrose. Techniques of Differential Topology in Relativity. SIAM, Philadelphia, (1972).

    MATH  Google Scholar 

  20. STEP. Web site http://einstein.stanford.edu/STEP/.

    Google Scholar 

  21. J. H. Taylor, L. A. Fowler, and J. M. Weisberg. Measurements of general relativistic effects in the binary pulsar PSR1913+16. Nature, 277, 437 (1979).

    Article  Google Scholar 

  22. R. W. Wald. General Relativity. University of Chicago Press, Chicago, 1984.

    MATH  Google Scholar 

  23. N. M. J. Woodhouse. Special Relativity. Springer Undergraduate Mathematics Series, Springer, London (2003).

    MATH  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

(2007). Redshift and Horizons. In: General Relativity. Springer Undergraduate Mathematics Series. Springer, London. https://doi.org/10.1007/978-1-84628-487-8_12

Download citation

Publish with us

Policies and ethics