Skip to main content

Significance of Magnesium in Animals

  • Chapter
New Perspectives in Magnesium Research

Abstract

Magnesium (Mg) metabolism differs among animal species because the digestive system and feeds are different. The diseases related to Mg nutrition are rare in pigs and poultry under practical conditions because their diets are formulated as containing an appropriate level of Mg. On the other hand, Mg defi ciency is not rare in grazing animals because Mg in pasture is affected by several factors such as soil and plant species and maturity, and thus Mg concentration is largely varied in pasture. Grass tetany in ruminants is induced by the reduction of Mg absorption resulting from low Mg intake with high potassium and nitrogenous compounds, and with the reduction of ruminal fermentation. Additionally, cold stress stimulates the incidence of tetany through decreasing Mg concentration in the cerebrospinal fluid. Excess Mg is one of the factors inducing urolithiasis in cats and cattle, and enterolithiasis in horses. However, Mg level in the practical diets alone cannot induce these diseases. Cat urolithiasis is developed in combination with alkaline urine, and cattle urolithiasis and horse enterolithiasis are developed in combination with high phosphorus intake. The diseases related to Mg nutrition are mainly developed in combination with other dietary factors and/or environmental factors in ruminants, horses, and cats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 269.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shockey WL, Conrad HR, Reid RL. Relationship between magnesium intake and fecal magnesium excretion of ruminants. J Dairy Sci 1984;67:2594–2598.

    PubMed  CAS  Google Scholar 

  2. Hirabayashi M, Matsui T, Ilyas A, Yano H. Fermentation of soybean meal by Aspergillus usami increases magnesium availability in rats. Jpn J Magnes Res 1995;14:45–53.

    CAS  Google Scholar 

  3. Kendall PT, Blaza SE, Smith PM. Comparative digestible energy requirements of adult beagles and domestic cats for body weight maintenance. J Nutr 1983;113:1946–1955.

    PubMed  CAS  Google Scholar 

  4. Tomas FM, Potter BJ. The site of magnesium absorption from the ruminant stomach. Br J Nutr 1976;36:37–45.

    Article  PubMed  CAS  Google Scholar 

  5. Hardwick LL, Jones MR, Brautbar N, Lee DB. Site and mechanism of intestinal magnesium absorption. Miner Electrolyte Metab 1990;16:174–180.

    PubMed  CAS  Google Scholar 

  6. Kayne LH, Lee DB. Intestinal magnesium absorption. Miner Electrolyte Metab 1993;19:210–217.

    PubMed  CAS  Google Scholar 

  7. Partridge IG. Studies on digestion and absorption in the intestines of growing pigs. 3. Net movements of mineral nutrients in the digestive tract. Br J Nutr 1978;39:527–537.

    Article  PubMed  CAS  Google Scholar 

  8. Schweigel M, Martens H. Magnesium transport in the gastrointestinal tract. Front Biosci2000;5:d666–d677.

    PubMed  CAS  Google Scholar 

  9. Hintz HF, Schryver HF. Magnesium metabolism in the horse. J Anim Sci 1972;35: 755–759.

    PubMed  CAS  Google Scholar 

  10. Matsui T, Murakami Y, Yano H. Magnesium in digesta of horses fed diets containing different amounts of phytate. In: Theophanides T, Anastassopoulou J, eds. Magnesium: Current Status and New Developments-Theoretical, Biological and Medical Aspects. New York: Kluwer; 1997:143–144.

    Google Scholar 

  11. Aikawa JK, Rhoades EL, Harmas DR, Readon JZ. Magnesium metabolism in rabbits using 28Mg as a tracer. Am J Physiol 1959;197:99–101.

    PubMed  CAS  Google Scholar 

  12. Matsui T, Yano H. Magnesium ligands in ileal digesta of piglets fed skim milk and soybean flour. In: Theophanides T, Anastassopoulou J, eds. Magnesium: Current Status and New Developments-Theoretical, Biological and Medical Aspects. New York: Kluwer; 1997:71–76.

    Google Scholar 

  13. Jittakhot S, Schonewille JT, Wouterse H, Yuangklang C, Beynen AC. Apparent magnesium absorption in dry cows fed at 3 levels of potassium and 2 levels of magnesium intake. J Dairy Sci 2004;87:379–385.

    Article  PubMed  CAS  Google Scholar 

  14. Schweigel M, Lang I, Martens H. Mg2+ transport in sheep rumen epithelium: evidence for an electrodiffusive uptake mechanism. Am J Physiol 1999;277:G976–G982.

    PubMed  CAS  Google Scholar 

  15. Quamme GA. Intracellular free Mg2+ with pH changes in cultured epithelial cells. Am J Physiol 1993;264:G383–G389.

    PubMed  CAS  Google Scholar 

  16. Coudray C, Feillet-Coudray C, Grizard D, Tressol JC, Gueux E, Rayssiguier Y. Fractional intestinal absorption of magnesium is directly proportional to dietary magnesium intake in rats. J Nutr 2002;132:2043–2047.

    PubMed  CAS  Google Scholar 

  17. Hardwick LL, Jones MR, Buddington RK, Clemens RA, Lee DB. Comparison of calcium and magnesium absorption: in vivo and in vitro studies. Am J Physiol 1990;259:G720–G726.

    PubMed  CAS  Google Scholar 

  18. Karbach U, Schmitt A, Saner FH. Different mechanism of magnesium and calcium transport across rat duodenum. Dig Dis Sci 1991;36:1611–1618.

    Article  PubMed  CAS  Google Scholar 

  19. Phillips JD, Davie RJ, Keighley MR, Birch NJ. Brief communication: magnesium absorption in human ileum. J Am Coll Nutr 1991;10:200–204.

    PubMed  CAS  Google Scholar 

  20. Larvor P. 28Mg kinetics in ewes fed normal or tetany prone grass. Cornell Vet 1976;66:413–429.

    PubMed  CAS  Google Scholar 

  21. Matsui T, Kawashima Y, Yano H. True absorption, and endogenous excretion of magnesium in cats given dry-type food and wet-type food [abstract]. Jpn J Magnes Res 2001;1:88–89.

    Google Scholar 

  22. Hintz HF, Schryver HF. Magnesium, calcium and phosphorus metabolism in ponies fed varying levels of magnesium. J Anim Sci 1973;37:927–930.

    PubMed  CAS  Google Scholar 

  23. Allsop TF, Rook JAF. The effect of diet and blood-plasma magnesium concentration on the endogenous faecal loss of magnesium in sheep. J Agric Sci Camb 1979;92:403–408.

    Article  CAS  Google Scholar 

  24. Georgievskii VI. The physiological role of macroelements. In: Georgievskii VI, Annenkov BN, Samokhin VI, eds. Mineral Nutrition of Animals. London: Butterworths; 1982:91–170.

    Google Scholar 

  25. Lucey S, Rowlands GJ, Russell AM. Short-term associations between disease and milk yield of dairy cows. J Dairy Res 1986;53:7–15.

    Article  PubMed  CAS  Google Scholar 

  26. Brommage R. Magnesium fluxes during lactation in the rat. Magnes Res 1989;2: 253–255.

    PubMed  CAS  Google Scholar 

  27. Asai Y, Matsui A, Osawa T, et al. Nutrient intake from milk in Thoroughbred foals. Proc AAAP Anim Sci Cong 1996;1:527–532.

    Google Scholar 

  28. Equine Research Institute, Japan Racing Association. Japanese Feeding Standard for Horses. Tokyo: Animal Media; 2004.

    Google Scholar 

  29. McDowell LR. Minerals in animal and human nutrition. Amsterdam: Elsevier; 2003.

    Google Scholar 

  30. Allcroft R. Hypomagneseamia in cattle. Vet Rec 1954;66:517–522.

    Google Scholar 

  31. Fontenot JP, Wise MB, Webb KE Jr. Interrelationships of potassium, nitrogen, and magnesium in ruminants. Fed Proc 1973;32:1925–1928.

    PubMed  CAS  Google Scholar 

  32. Blaxter KL, McGill RF. Magnesium metabolism in cattle. Vet Rev Annot 1956;2: 35–55.

    CAS  Google Scholar 

  33. Matsui T, Kawabata T, Harumoto T, Yano H. The effect of a synthetic analogue of pyrophosphate on calcium, magnesium and phosphorus homeostasis in sheep. Asian-Austral J Anim Sci 1992;5:303–308.

    Google Scholar 

  34. Matsui T, Yano H, Harumoto T. The effect of suppressing bone resorption on Mg homeostasis in sheep. Comp Biochem Physiol 1994;107A:233–236.

    Article  CAS  Google Scholar 

  35. Robson AB, Sykes AR, McKinnon AE, Bell ST. A model of magnesium metabolism in young sheep: transactions between plasma, cerebrospinal fluid and bone. Br J Nutr 2004;91:73–79.

    Article  PubMed  CAS  Google Scholar 

  36. Garcia-Gomez F, Williams PA. Magnesium metabolism in ruminant animals and its relationship to other inorganic elements. Asian Austral J Anim Sci 2000;13: 158–170.

    CAS  Google Scholar 

  37. Allsop TF, Pauli JV. Cerebrospinal fluid magnesium concentrations in hypomagnesaemic tetany. Proc N Z Soc Anim Prod 1975;35:170–174.

    CAS  Google Scholar 

  38. McCoy MA, Young PB, Hudson AJ, Davison G, Kennedy DG. Regional brain monoamine concentrations and their alterations in bovine hypomagnesaemic tetany experimentally induced by a magnesium-deficient diet. Res Vet Sci 2000;69:301–307.

    Article  PubMed  CAS  Google Scholar 

  39. Parkinson GB, Leaver DD. The effect of experimental hyperkalaemia on cerebrospinal fluid magnesium. Anim Prod Aust 1980;13:447.

    Google Scholar 

  40. Hunt E. Disorder of magnesium metabolism. In: Smith BB, ed. Large Animal Internal Medicine. St. Louis: Mosby; 1996:1474–1480.

    Google Scholar 

  41. Agricultural Research Council. The Nutrient Requirements of Ruminant Livestock. Slough UK: Commonwealth Agricultural Beureaux; 1980.

    Google Scholar 

  42. Agriculture, Forestry and Fisheries Research Council Secretariat. Standard Tables of Feed Composition in Japan. Tokyo: Japan Livestock Industry Association; 1997.

    Google Scholar 

  43. Haaranen S. Does high plant feed magnesium and potassium protect healthy ruminants from atherosclerosis? A review. Pathophysiology 2003;10:1–6.

    Article  PubMed  CAS  Google Scholar 

  44. Buffington CA, Rogers QR, Morris JG. Effect of diet on struvite activity product in feline urine. Am J Vet Res 1990;51:2025–2030.

    PubMed  CAS  Google Scholar 

  45. Bovee KC. Urolithiasis. In: Bovee KC, ed. Canine Nephrology. Philadelphia: Harwell; 1984:355–379.

    Google Scholar 

  46. Vagnoni DB, Oetzel GR. Effects of dietary cation-anion difference on the acid-base status of dry cows. J Dairy Sci 1998;81:1643–1652.

    Article  PubMed  CAS  Google Scholar 

  47. Amanzadeh J, Gitomer WL, Zerwekh JE, et al. Effect of high protein diet on stoneforming propensity and bone loss in rats. Kidney Int 2003;64:2142–2149.

    Article  PubMed  CAS  Google Scholar 

  48. Cottam YH, Caley P, Wamberg S, Hendriks WH. Feline reference values for urine composition. J Nutr 2002;132:1754S–1756S.

    PubMed  CAS  Google Scholar 

  49. Kallfelz FA, Bressett JD, Wallace RJ. Urethral obstruction in random source SPF male cats introduced by dietary magnesium. Feline Pract 1980;10:25–35.

    Google Scholar 

  50. National Research Council. Nutrient Requirements of Cats. rev. ed. Washington, DC: National Academy Press; 1986.

    Google Scholar 

  51. Buffington CA, Rogers QR, Morris JG, Cook NE. Feline struvite urolithiasis-magnesium effect depends on urinary pH. Feline Pract 1985;15:29–33.

    Google Scholar 

  52. Buffington CA, Chew D. Intermittent alkaline urine in a cat fed an acidifying diet. J Am Vet Med Assoc 1996;209:103–104.

    PubMed  CAS  Google Scholar 

  53. Malone F, Goodall E, O’Hagan J. Factors associated with disease in intensive lamb fattening units. Irish Vet J 1998;51:78–82.

    Google Scholar 

  54. Kallfelz FA, Ahmed AS, Wallace RJ, et al. Dietary magnesium and urolithiasis in growing calves. Deut Tierarztl Woch 1985;92:407–411.

    CAS  Google Scholar 

  55. Cuddeford D. Role of magnesium in the aetiology of ovine urolithiasis in fattening store lambs and intensively fattened lambs. Vet Rec 1987;121:194–197.

    PubMed  CAS  Google Scholar 

  56. Hassel DM, Langer DL, Snyder JR, Drake CM, Goodell ML, Wyle A. Evaluation of enterolithiasis in equids: 900 cases (1973–1996). J Am Vet Med Assoc 1999;214: 233–237.

    PubMed  CAS  Google Scholar 

  57. Butters AL. Intestinal calculi in the horse. Vet J 1894;18:348–352.

    Google Scholar 

  58. Lloyd K, Hintz HF, Wheat JD, Schryver HF. Enteroliths in horses. Cornell Vet 1987;77:172–186.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

Matsui, T. (2007). Significance of Magnesium in Animals. In: Nishizawa, Y., Morii, H., Durlach, J. (eds) New Perspectives in Magnesium Research. Springer, London. https://doi.org/10.1007/978-1-84628-483-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-483-0_31

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-388-8

  • Online ISBN: 978-1-84628-483-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics