Skip to main content

Magesium in Hemodialysis Patients

  • Chapter

Abstract

Magnesium (Mg) is the second most abundant intracellular cation and the fourth most abundant cation of the human body. Magnesium plays an essential role as a cofactor for a variety of enzymes, including those involved in several key steps of intermediary metabolism and phosphorylation. In addition, Mg is required for protein and nucleic acid synthesis, the cell cycle progression, cytoskeletal and mitochondrial integrity, and the binding of substances to the plasma membrane. Disorders of Mg homeostasis may lead to profound changes in the function and well being of the organism. Serum Mg concentration is normal in patients with early renal failure, but hypermagnesemia usually occurs in the advanced stage of renal failure due to the reduced urinary Mg excretion. Following the introduction of chronic hemodialysis or continuous ambulatory peritoneal dialysis (CAPD) treatment, the major factor to determine Mg balance is Mg levels in the dialysate. Patients with end-stage renal disease (ESRD) who are receiving dialysis may develop various complications including hypertension, atherosclerosis, dyslipidemia, and renal osteodystrophy. The disturbance of Mg balance in those patients maintained on dialysis may affect the development of these complications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   269.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clarkson EM, McDonald SJ, Dewardener HE, et al. Magnesium metabolism in chronic renal failure. Clin Sci 1965;28:107–115.

    PubMed  CAS  Google Scholar 

  2. Kopple JD, Coburn JW. Metabolic studies of low protein diets in uremia. II. Calcium, phosphorus, and magnesium. Medicine 1973;52:597–607.

    Article  PubMed  CAS  Google Scholar 

  3. Brannan PGP, Verne-Marini P, Pak CYC, et al. Magnesium absorption in the human small intestine. Results in normal subjects, patients with chronic renal disease and patients with absorptive hypercalciuria. J Clin Invest 1976;57:1412–1418.

    PubMed  CAS  Google Scholar 

  4. Truttmann AC, Faraone R, von Vigier RO, et al. Maintenance hemodialysis and circulating ionized magnesium. Nephron 2002;92:616–621.

    Article  PubMed  CAS  Google Scholar 

  5. Markell MS, Altura BT, Sarn Y, et al. Deficiency of serum ionized magnesium in patients receiving hemodialysis or peritoneal dialysis. ASAIO J 1993;39:M801–M804.

    Article  PubMed  CAS  Google Scholar 

  6. Saha H, Harmoinen A, Pietila K, et al. Measurement of serum ionized versus total levels of magnesium and calcium in hemodialysis patients. Clin Nephrol 1996;46:326–331.

    PubMed  CAS  Google Scholar 

  7. Huijgen HJ, Sanders R, van Olden RW, et al. Intracellular and extracellular blood magnesium fractions in hemodialysis patients; is the ionized fractions a measure of magnesium excess? Clin Chem 1998;44:639–648.

    PubMed  CAS  Google Scholar 

  8. Dewitte K, Dhondt A, Lameire N, et al. The ionized fraction of serum total magnesium in hemodialysis patients: is it really lower than in healthy subjects? Clin Nephrol 2002;58:205–210.

    PubMed  CAS  Google Scholar 

  9. Mountokalakis TD. Magnesium metabolism in chronic renal failure. Magnes Res 1990;3:121–127.

    PubMed  CAS  Google Scholar 

  10. Kaupke CJ, Zhou XJ, Vaziri ND. Cytosolic ionized magnesium concentration in end-stage renal disease. ASAIO J 1993;39:M614–M617.

    Article  PubMed  CAS  Google Scholar 

  11. Hishida A, Shapiro JI, Chan L. Effect of uremia on cytosolic free magnesium [Mg+]i and energy metabolism in skeletal muscle. J Am Soc Nephrol 1992;3:687.

    Google Scholar 

  12. Kisters K, Spieker C, Tepel M, et al. Plasma, cytosolic and membrane magnesium content in renal insufficiency. Magnes Res 1995;8:167–172.

    Google Scholar 

  13. Huijgen HJ, Sanders R, van Olden RW, et al. Intracellular and extracellular blood magnesium fractions in hemodialysis patients; is the ionized fraction a measure of magnesium excess? Clin Chem 1998;44:639–648.

    PubMed  CAS  Google Scholar 

  14. Block GA, Hulbert-Shearon TE, Levin NW, et al. Association of serum phosphorus and calcium X phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am J Kidney Dis 1998;31:607–617.

    PubMed  CAS  Google Scholar 

  15. Malluche HH, Mawad H. Management of hyperphosphataemia of chronic kidney disease: lessons from tha past and future directions. Nephrol Dial Transplant 2002;17:1170–1175.

    Article  PubMed  Google Scholar 

  16. Fine KD, Santa Ana CA, Porter JL, et al. Intestinal absorption of magnesium from food and supplements. J Clin Invest 1991;88:394–402.

    Google Scholar 

  17. Guillot AP, Hood VL, Runge CF, et al. The use of magnesium-containing phosphate binders in patients with end-stage renal disease on maintenance hemodialysis. Nephron 1982;30:114–117.

    PubMed  CAS  Google Scholar 

  18. O’Donovan R, Baldwin D, Hammer M, et al. Substitution of aluminium salts by magnesium salt in control of dialysis hyperphosphataemia. Lancet 1986;1:880–882.

    Article  PubMed  CAS  Google Scholar 

  19. Delmez JA, Kelber J, Norword KY, et al. Magnesium carbonate as a phosphorus binder: a prospective, controlled, crossover study. Kidney Int 1996;49:163–167.

    PubMed  CAS  Google Scholar 

  20. Pletka P, Bernstein DS, Hampers CL, et al. Relationship between magnesium and secondary hyperparathyroidism during long-term hemodialysis. Metabolism 1974;23:619–624.

    Article  PubMed  CAS  Google Scholar 

  21. Navarro JF, Macía ML, Gallego E, et al. Serum magnesium concentration and PTH levels. Is long-term chronic hypermagnesemia a risk factor for adynamic bone disease? Scand J Urol Nephrol 1997;31:275–280.

    Article  PubMed  CAS  Google Scholar 

  22. Navarro JF, Mora C, Jiménez A, et al. Relationship between serum magnesium and parathyroid hormone levels in hemodialysis patients. Am J Kidney Dis 1999;34: 43–48.

    PubMed  CAS  Google Scholar 

  23. Gonella M, Ballanti P, Della RC, et al. Improved bone morphology by normalizing serum magnesium in chronically hemodialyzed patients. Miner Electrolyte Metab 1988;13:240–245.

    Google Scholar 

  24. Morinière P, Vinatier I, Westeel PF, et al. Magnesium hydroxide as a complementary aluminum-free phosphate binder to moderate doses of oral calcium in uraemic patients on chronic haemodialysis: lack of deleterious effect on bone mineralization. Nephrol Dial Transplant 1988;3:651–656.

    PubMed  Google Scholar 

  25. Ng AHM, Hercz G, Kandel R, et a l. Association between fluoride, magnesium, aluminum and bone quality in renal osteodystrophy. Bone 2004;34:216–224.

    Article  PubMed  CAS  Google Scholar 

  26. Meema HE, Oreopoulos G, Rapoport A. Serum magnesium level and arterial calcification in end-stage renal disease. Kidney Int 1987;32:388–394.

    PubMed  CAS  Google Scholar 

  27. Tzanakis I, Pras A, Kounali D, et al. Mitral annular calcification in haemodialysis patients: a possible protective role of magnesium. Nephrol Dial Transplant 1997;12:2036–2037.

    Article  PubMed  CAS  Google Scholar 

  28. Okuno S, Ishimura E, Maeno Y, et al. Relationship between serum magnesium and vascular calcification in hemodialysis patients. J Jap Soc Magnes Res 2005;24: 59–67.

    CAS  Google Scholar 

  29. Shoji T, Emoto M, Tabata T, et al. Advanced atherosclerosis in predialysis patients with chronic renal failure. Kidney Int 2002;61:2187–2192.

    Article  PubMed  Google Scholar 

  30. Altura BT, Brust M, Bloom S, et al. Magnesium dietary intake modulates blood lipid levels and atherogenesis. Proc Natl Acad Sci U S A 1990;87:1840–1844.

    Article  PubMed  CAS  Google Scholar 

  31. Gartside PS, Glueck CJ. The important role of modifiable dietary and behavioral characteristics in the causation and prevention of coronary heart disease hospitalization and mortality: the Prospective NHANES I Follow-up Study. J Am Coll Nutr 1995;14:71–79.

    PubMed  CAS  Google Scholar 

  32. Liao F, Folsom AR, Brancati FL. Is low magnesium concentration a risk factor for coronary heart disease? The atherosclerosis risk in communities (ARIC) study. Am Heart J 1998;136:480–490.

    Article  PubMed  CAS  Google Scholar 

  33. Amighi J, Sabeti S, Schlager O, et al. Low serum magnesium predicts neurological events in patients with advanced atherosclerosis. Stroke 2004;35:22–27.

    Article  PubMed  CAS  Google Scholar 

  34. Tzanakis I, Virvidakis K, Tsomi A, et al. Intra-and extracellular magnesium levels and atheromatosis in haemodialysis patients. Magnes Res 2004;17:102–108.

    PubMed  CAS  Google Scholar 

  35. Rayssiguier Y, Gueux E, Bussiere L, et al. Dietary magnesium affects susceptibility of lipoproteins and tissues to peroxidation in rats. J Am Coll Nutr 1993;12: 133–137.

    PubMed  CAS  Google Scholar 

  36. Yamaguchi Y, Kitagawa S, Kunitomo M, et al. Preventive effects of magnesium on raised serum lipid peroxide levels and aortic cholesterol deposition in mice fed an atherogenic diet. Magnes Res 1994;7:31–37.

    PubMed  CAS  Google Scholar 

  37. Malpuech-Brugere C, Nowacki W, Daveau M, et al. Inflammatory response following acute magnesium deficiency in the rat. Biochem Biophys Acta 2000;1501: 91–98.

    PubMed  CAS  Google Scholar 

  38. Maier JAM. Low magnesium and atherosclerosis: an evidence-based link. Mol Aspects Med 2003;24:137–146.

    Article  PubMed  CAS  Google Scholar 

  39. Irish AB, Thompson CH, Kemp GJ, et al. Intracellular free magnesium concentrations in skeletal muscle in chronic uraemia. Nephron 1997;76:20–25.

    PubMed  CAS  Google Scholar 

  40. Delva PT, Pastori C, Degan M, et al. Intralymphocyte free magnesium in a group of subjects with essential hypertension. Hypertension 1996;28:433–439.

    PubMed  CAS  Google Scholar 

  41. Inagaki O, Shono T, Nakagawa K, et al. Effect of magnesium deficiency on lipid metabolism in uremic rats. Nephron 1990;55:176–180.

    Article  PubMed  CAS  Google Scholar 

  42. Robles NR, Escola JM, Albarran L, et al. Correlation of serum magnesium and serum lipid levels in hemodialysis patients. Nephron 1998;78:118–119.

    Article  PubMed  CAS  Google Scholar 

  43. Mitsopoulos E, Griveas I, Zanos S, et al. Increase in serum magnesium level in haemodialysis patients receiving sevelamer hydrochloride. Int Urol Nephrol 2005;37:321–328.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

Okuno, S., Inaba, M. (2007). Magesium in Hemodialysis Patients. In: Nishizawa, Y., Morii, H., Durlach, J. (eds) New Perspectives in Magnesium Research. Springer, London. https://doi.org/10.1007/978-1-84628-483-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-483-0_26

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-388-8

  • Online ISBN: 978-1-84628-483-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics