Skip to main content

Abstract

Magnesium is essential for the optimal function of a diversity of lifesustaining processes. It is cofactor of more than 300 enzymes, participating in the metabolism of carbohydrates, lipids, proteins, and nucleic acids, in the synthesis of hydrogen transporters, and particularly in all reactions involving the formation and use of adenosine triphosphate (ATP). Magnesium also serves as a regulator of many physiological functions, including neuromuscular, cardiovascular, immunological, and hormonal functions, as well as the maintenance of membrane stability.1,2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 269.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Durlach J, Bara M. Le magnésium en biologie et en médecine. Cachami Edition Medicales: Internationales, 2nd ed., EM, ed. Cachan, 2000.

    Google Scholar 

  2. Seelig MS. Magnesium Deficiency in the Pathogenesis of Disease. New York: Plenum Press; 1980.

    Google Scholar 

  3. Clarkson PM. Micronutrients and exercise: anti-oxidants and minerals. J Sports Sci 1995;13:S11–S24.

    PubMed  Google Scholar 

  4. Bohl CH, Volpe S L. Magnesium and exercise. Crit Rev Food Sci Nutr 2002;42: 533–563.

    Article  PubMed  CAS  Google Scholar 

  5. Lukaski HC. Vitamin and mineral status: effects on physical performance. Nutrition 2004;20:632–644.

    Article  PubMed  CAS  Google Scholar 

  6. Seelig MS. Consequences of magnesium deficiency on the enhancement of stress reactions; preventive and therapeutic implications (a review). J Am Coll Nutr 1994;13:429–446.

    PubMed  CAS  Google Scholar 

  7. Córdova A, Navas FJ, Gómez-Carraminãna M, et al. Evaluation of magnesium intake in elite sportsmen. Magnes Bull 1994;16:59–63.

    Google Scholar 

  8. Casoni I, Guglielmini C, Graziano L, et al. Changes of magnesium concentrations in endurance athletes. Int J Sports Med 1990;11:234–237.

    PubMed  CAS  Google Scholar 

  9. Rayssiguier Y, Guezennec CY, Durlach J. New experimental and clinical data on the relationship between magnesium and sport. Magnes Res 1990;3:93–102.

    PubMed  CAS  Google Scholar 

  10. Cordova A. Changes on plasmatic and erythrocytic magnesium levels after highintensity exercises in men. Physiol Behav 1992;52:819–821.

    Article  PubMed  CAS  Google Scholar 

  11. Joborn H, Akerstrom G, Ljunghall S. Effects of exogenous catecholamines and exercise on plasma magnesium concentrations. Clin Endocrinol (Oxf) 1985;23:219–226.

    CAS  Google Scholar 

  12. Monteiro CP. Equilíbrio Oxirredutor: Um Estudo Em Nadadores E Em Não Atletas, Em Repouso E Em Resposta Ao Exercício. Ciências Da Motricidade. Lisboa: Faculdade de Motricidade Humana, Universidade Técnica de Lisboa; 2005:209.

    Google Scholar 

  13. Deuster PA, Dolev E, Kyle SB, et al. Magnesium homeostasis during high-intensity anaerobic exercise in men. J Appl Physiol 1987;62:545–550.

    PubMed  CAS  Google Scholar 

  14. Franz KB, Ruddel H, Todd GL, et al. Physiologic changes during a marathon, with special reference to magnesium. J Am Coll Nutr 1985;4:187–194.

    PubMed  CAS  Google Scholar 

  15. Guerra M, Monje A, Perez-Beriain R, et al. Ionic magnesium and selenium in serum after a cycle-ergometric test in football-players. In: Centeno JA, Collery P, Vernet G, Finkelman RB, Gibb H, Etienne JC, eds. Metal Ions in Biology and Medicine. Vol. 6. Paris: John Libbey and Company Ltd. 2000:501–504.

    Google Scholar 

  16. Laires MJ, Alves F, Halpern MJ. Changes in serum and erythrocyte magnesium and blood lipids after distance swimming. Magnes Res 1988;1:219–222.

    PubMed  CAS  Google Scholar 

  17. Laires MJ, Alves F. Changes in plasma, erythrocyte, and urinary magnesium with prolonged swimming exercise. Magnes Res 1991;4:119–122.

    PubMed  CAS  Google Scholar 

  18. Laires MJ, Madeira F, Sergio J, et al. Preliminary study of the relationship between plasma and erythrocyte magnesium variations and some circulating pro-oxidant and antioxidant indices in a standardized physical effort. Magnes Res 1993;6:233–238.

    PubMed  CAS  Google Scholar 

  19. Rose LI, Caroll DR, Lowe SL, et al. Serum electrolyte changes after marathon running. J Appl Physiol 1970;29:449–451.

    PubMed  CAS  Google Scholar 

  20. Lijnen P, Hespel P, Fagard R, et al. Erythrocyte, plasma and urinary magnesium in men before and after a marathon. Eur J Appl Physiol Occup Physiol 1988;58:252–256.

    Article  PubMed  CAS  Google Scholar 

  21. Welsh RC, Warburton DER, Haykowksy MJ, et al. Hematological response to the half ironman triathlon. Med Sci Sports Exerc 1999;31:63.

    Google Scholar 

  22. Refsum HE, Meen HD, Stromme SB. Whole blood, serum and erythrocyte magnesium concentrations after repeated heavy exercise of long duration. Scand J Clin Lab Invest 1973;32:123–127.

    PubMed  CAS  Google Scholar 

  23. Stendig-Lindberg G, Shapiro Y, Epstein Y, et al. Changes in serum magnesium concentration after strenuous exercise. J Am Coll Nutr 1987;6:35–40.

    PubMed  CAS  Google Scholar 

  24. Haymes EM. Vitamin and mineral supplementation to athletes. Int J Sport Nutr 1991;1:146–169.

    PubMed  CAS  Google Scholar 

  25. Rayssiguier Y, Larvor P. Hypomagnesemia following stimulation of lipolysis in ewes: effects of cold exposure and fasting. Magnes Heal th Dis 1980;9: 68–72.

    Google Scholar 

  26. Rayssiguier Y. Hypomagnesemia resulting from adrenaline infusion in ewes: its relation to lipolysis. Horm Metab Res 1977;9:309–314.

    Article  PubMed  CAS  Google Scholar 

  27. Elliot DA, Rizack MA. Epinephrine and adrenocorticotropic hormone-stimulated magnesium accumulation in adipocytes and their plasma membranes. J Biol Chem 1974;249:3985–3990.

    Google Scholar 

  28. Speich M, Pineau A, Ballereau F. Minerals, trace elements and related biological variables in athletes and during physical activity. Clin Chim Acta 2001;312:1–11.

    Article  PubMed  CAS  Google Scholar 

  29. Stromme SB, Stenwold IE, Meen HD, et al. Magnesium metabolism during prolonged heavy exercise. In: Howald H, Poortmans JR, eds. Metabolic Adaptation to Prolonged Physical Exercise. Basel: Birkhauser; 1975:361–366.

    Google Scholar 

  30. Lijnen P, Hespel P, Fagard R, et al. Erythrocyte 2,3-diphosphoglycerate concentration before and after a marathon in men. Eur J Appl Physiol Occup Physiol 1988;57:452–455.

    Article  PubMed  CAS  Google Scholar 

  31. Pereira D, Laires MJ, Monteiro CP, et al. Oral magnesium supplementation in heavily trained football players. Impact on exercise capacity and lipoperoxidation. In: Halpern MJ, Durlach J, eds. Current Research on Magnesium. London: John Libbey; 1996:237–241.

    Google Scholar 

  32. Golf SW, Happel O, Graef V. Plasma aldosterone, cortisol and electrolyte concentration in physical exercise after magnesium supplementation. J Clin Chem Biochem 1984;22:717–721.

    CAS  Google Scholar 

  33. Laires MJ, Sainhas J, Fernandes JS, et al. Algunos Efectos Del Esfuerzo Sobre Los Parámetros De Magnesio Sanguíneo. Vol. 24. Congresso Científico Olímpico; Málaqa 1995:96–100.

    Google Scholar 

  34. Monteiro CP, Palmeira A, Felisberto GM, et al. Magnesium, calcium, trace elements and lipid profile in trained volleyball players: influence of training. In: Halpern MJ, Durlach J, eds. Current Research in Magnesium. London: John Libbey; 1996:231–235.

    Google Scholar 

  35. Resina A, Brettoni M, Gatteschi L, et al. Changes in the concentrations of plasma and erythrocyte magnesium and of 2,3-diphosphoglycerate during a period of aerobic training. Eur J Appl Physiol Occup Physiol 1994;68:390–394.

    Article  PubMed  CAS  Google Scholar 

  36. Murphy E. Mysteries of magnesium homeostasis. Circ Res 2000;86:245–248.

    PubMed  CAS  Google Scholar 

  37. Mooren FC, Golf SW, Lechtermann A, et al. Alterations of ionized Mg2+ in human blood after exercise. Life Sci 2005;77:1211–1225.

    Article  PubMed  CAS  Google Scholar 

  38. Golf VS, Graef V, Gerlach JJ, et al. Veänderunger der serum-CK-und serum-CKMB aktivatäten in abhängigkeit von einer magnesium-substitution bein leistungs sportlerinnen. Magnes Bull 1983;2:43–46.

    Google Scholar 

  39. Huet F, Keppling J, Marajo J, et al. Comportement nutritionnel du coureur de demi-fond. Aspects qualitatifs et quantitatifs. Rapports avec la depense energétique de l’entraînement. Sci Sports 1988;3:17–28.

    Article  Google Scholar 

  40. Stendig-Lindberg G, Wacker WEC, Shapiro Y. Long term effects of peak strenuous effort on serum magnesium, lipids, and blood sugar in apparently healthy young men. Magnes Res 1991;4:59–65

    PubMed  CAS  Google Scholar 

  41. Resina A, Gatteschi L, Castellani W, et al. Effect of aerobic training and exercise on plasma and erythrocyte magnesium concentration. In: Kies CV, Driskell JA, eds. Sports Nutrition: Minerals and Electrolytes. London: CRC Press; 1995:189–203.

    Google Scholar 

  42. Warburton DE, Welsh RC, Haykowsky MJ, et al. Biochemical changes as a result of prolonged strenuous exercise. Br J Sports Med 2002;36:301–303.

    Article  PubMed  Google Scholar 

  43. Rowe WJ. Endurance exercise and injury to the heart. Sports Med 1993;16:73–79.

    PubMed  CAS  Google Scholar 

  44. Brilla LR, Haley TF. Effect of magnesium supplementation on strength training in humans. J Am Coll Nutr 1992;11:326–329.

    PubMed  CAS  Google Scholar 

  45. Terblanche S, Noakes TD, Dennis SC, et al. Failure of magnesium supplementation to influence marathon running performance or recovery in magnesium-replete subjects. Int J Sport Nutr 1992;2:154–164.

    PubMed  CAS  Google Scholar 

  46. Halliwell B, Gutteridge JMC. Oxygen Free Radicals in Biology and Medicine. Oxford: Clarendon Press; 1989.

    Google Scholar 

  47. Sen CK. Oxidants and antioxidants in exercise. J Appl Physiol 1995;79:675–686.

    PubMed  CAS  Google Scholar 

  48. Duthie GG, Robertson JD, Maughan RJ, et al. Blood antioxidant status and erythrocyte lipid peroxidation following distance running. Arch Biochem Biophys 1990;282:78–83.

    Article  PubMed  CAS  Google Scholar 

  49. Conn CA, Kozak WE, Tooten PC, et al. Effect of exercise and food restriction on selected markers of the acute phase response in hamsters. J Appl Physiol 1995;78:458–465.

    PubMed  CAS  Google Scholar 

  50. Sureda A, Tauler P, Aguilo A, et al. Relation between oxidative stress markers and antioxidant endogenous defences during exhaustive exercise. Free Radic Res 2005;39:1317–1324.

    Article  PubMed  CAS  Google Scholar 

  51. Tauler P, Sureda A, Cases N, et al. Increased lymphocyte antioxidant defences in response to exhaustive exercise do not prevent oxidative damage. J Nutr Biochem 2005. In press, available online 28 Nov 2005.

    Google Scholar 

  52. Vollaard NB, Shearman JP, Cooper CE. Exercise-induced oxidative stress:myths, realities and physiological relevance. Sports Med 2005;35:1045–1062.

    Article  PubMed  Google Scholar 

  53. Packer L, Singh VN. Nutrition and exercise introduction and overview. J Nutr 1992;122:758–759.

    PubMed  CAS  Google Scholar 

  54. Langer SZ. Presynaptic regulation of the release of catecholamines. Pharmacol Rev 1981;32:337.

    Google Scholar 

  55. Minnich V, Smith M B, Brauner M J, et al. Glutathione biosynthesis in human erythrocytes-I. Identification of the enzymes of glutathione synthesis in hemolysates. J Clin Invest 1971;50:507–513.

    Article  PubMed  CAS  Google Scholar 

  56. Rock E, Astier C, Lab C, et al. Dietary magnesium deficiency in rats enhances free radical production in skeletal muscle. J Nutr 1995;125:1205–1210.

    PubMed  CAS  Google Scholar 

  57. Rayssiguier Y, Gueux E, Bussiere L, et al. Dietary magnesium affects susceptibility of lipoproteins and tissues to peroxidation in rats. J Am Coll Nutr 1993;12:133–137.

    PubMed  CAS  Google Scholar 

  58. Malpuech-Brugère C, Rock E, Astier C, et al. Exacerbated immune stress response during experimental magnesium deficiency results from abnormal cell calcium homeostasis. Life Sci 1998;63:1815–1822.

    Article  PubMed  Google Scholar 

  59. Weglicki WB, Kramer JH, Mak IT, et al. Proinflammatory neuropeptides in magnesium deficiency. In: Centeno PC, Vernet G, Finkelman RB, Gibb H, Etienne JC, eds. Metal Ions in Biology and Medicine. Vol. 6. Paris: John Libbey; 2000:472–474.

    Google Scholar 

  60. Zhu Z, Kimura M, Itokawa Y. Selenium concentration and glutathione peroxidase activity in selenium and magnesium deficient rats. Biol Trace Elem Res 1993;37:209–217.

    PubMed  CAS  Google Scholar 

  61. Chugh SN, Kolley T, Kakkar R, et al. A critical evaluation of anti-peroxidant effect of intravenous magnesium in acute aluminium phosphide poisoning. Magnes Res 1997;10:225–230.

    PubMed  CAS  Google Scholar 

  62. Tam M, Gomez S, Gonzalez-Gross M, et al. Possible roles of magnesium on the immune system. Eur J Clin Nutr 2003;57:1193–1197.

    Article  PubMed  CAS  Google Scholar 

  63. Pedersen BK. Exercise Immunology. New York: Springer; 1997.

    Google Scholar 

  64. Pedersen BK. Influence of physical activity on the cellular immune system: mechanisms of action. Int J Sports Med 1991;12:S23–S29.

    Article  PubMed  Google Scholar 

  65. Pedersen BK, Ullum H. NK cell response to physical activity: possible mechanisms of action. Med Sci Sports Exerc 1994;26:140–146.

    Article  PubMed  CAS  Google Scholar 

  66. Bendtzen K. Immune hormones (cytokines); pathogenic role in autoimmune rheumatic and endocrine diseases. A review. Autoimmunity 1989;2:177–189.

    Article  PubMed  CAS  Google Scholar 

  67. Cannon JG, Evans WJ, Hughes VA, et al. Physiological mechanisms contributing to increased interleukin-1 secretion. J Appl Physiol 1986;61:1869–1874.

    PubMed  CAS  Google Scholar 

  68. Venkatraman JT, Pendergast DR. Effect of dietary intake on immune function in athletes. Sports Med 2002;32:323–337.

    Article  PubMed  Google Scholar 

  69. Pedersen BK, Toft AD. Effects of exercise on lymphocytes and cytokines. Br J Sports Med 2000;34:246–251.

    Article  PubMed  CAS  Google Scholar 

  70. Bishop NC, Blannin AK, Walsh NP, et al. Nutritional aspects of immunosuppression in athletes. Sports Med 1999;28:151–176.

    Article  PubMed  CAS  Google Scholar 

  71. Gleeson M, Nieman DC, Pedersen BK. Exercise, nutrition and immune function. J Sports Sci 2004;22:115–125.

    Article  PubMed  Google Scholar 

  72. Shephard RJ, Shek PN. Heavy exercise, nutrition and immune function: is there a connection? Int J Sports Med 1995;16:491–497.

    PubMed  CAS  Google Scholar 

  73. Mackinnon LT. Chronic exercise training effects on immune function. Med Sci Sports Exerc 2000;32:S369–S376.

    Article  PubMed  CAS  Google Scholar 

  74. Peters EM. Exercise, immunology and upper respiratory tract infections. Int J Sports Med 1997;18(suppl 1):S69–S77.

    PubMed  CAS  Google Scholar 

  75. Gleeson M, Bishop NC. Elite athlete immunology: importance of nutrition. Int J Sports Med 2000;21(suppl 1):S44–S50.

    Article  PubMed  CAS  Google Scholar 

  76. Mooren FC, Lechtermann A, Fromme A, et al. Alterations in intracellular calcium signaling of lymphocytes after exhaustive exercise. Med Sci Sports Exerc 2001;33:242–248.

    Article  PubMed  CAS  Google Scholar 

  77. Beisel WR, Edelman R, Nauss K, et al. Single-nutrient effects on immunologic functions. Report of a workshop sponsored by the Department of Food and Nutrition and its nutrition advisory group of the American Medical Association. J Am Med Assoc 1981;245:53–58.

    Article  CAS  Google Scholar 

  78. Galan P, Thibault H, Preziosi P, et al. Interleukin 2 production in iron-deficient children. Biol Trace Elem Res 1992;32:421–426.

    PubMed  CAS  Google Scholar 

  79. Singh A, Failla ML, Deuster PA. Exercise-induced changes in immune function: effects of zinc supplementation. J Appl Physiol 1994;76:2298–2303.

    PubMed  CAS  Google Scholar 

  80. Laires MJ, Monteiro CP. Magnesium status: Influence on the regulation of exercise induced oxidative stress and immune function in athletes. In: Rayssiguier Y, Mazur A, Durlach J, eds. Advances in Magnesium Research: Nutrition and Health. London: John Libbey; 2001:433–441.

    Google Scholar 

  81. Galland L. Magnesium and immune function: an overview. Magnesium 1988;7: 290–299.

    PubMed  CAS  Google Scholar 

  82. Perraud AL, Knowles HM, Schmitz C. Novel aspects of signaling and ion-homeostasis regulation in immunocytes. The TRPM ion channels and their potential role in modulating the immune response. Mol Immunol 2004;41:657–673.

    Article  PubMed  CAS  Google Scholar 

  83. Malpuech-Brugère C, Nowacki W, Rock E, et al. Enhanced tumour necrosis factoralpha production following endotoxin challenge in rats in an early event during magnesium deficiency. Biochim Biophys Acta 1999;1453:35–40.

    PubMed  Google Scholar 

  84. Weglicki WB, Phillips TM. Pathobiology of magnesium deficiency: a cytokine/ neurogenic inflammation hypothesis. Am J Physiol 1992;263:R734–R737.

    PubMed  CAS  Google Scholar 

  85. Rayssiguier Y, Brussière F, Malpuech-Brugère C, et al. Activation of phagocytic cell and inflammatory response during experimental magnesium deficiency. In: Centeno PC, Vernet G, Finkelman R B, Gibb H, Etienne JC, eds. Metal Ions in Biology and Medicine. Vol. 6. Paris: John Libbey; 2000:534–536.

    Google Scholar 

  86. Kabashima H, Nagata K, Maeda K, et al. Involvement of substance P, mast cells, TNF-alpha and ICAM-1 in the infiltration of inflammatory cells in human periapical granulomas. J Oral Pathol Med 2002;31:175–180.

    Article  PubMed  CAS  Google Scholar 

  87. Malpuech-Brugere C, Nowacki W, Daveau M, et al. Inflammatory response following acute magnesium deficiency in the rat. Biochim Biophys Acta 2000;1501:91–98.

    PubMed  CAS  Google Scholar 

  88. Mak IT, Kramer JH, Weglicki WB. Suppression of neutrophil and endothelial activation by substance P receptor blockade in the Mg-deficient rat. Magnes Res 2003;16:91–97.

    PubMed  CAS  Google Scholar 

  89. Bussiere FI, Mazur A, Fauquert JL, et al. High magnesium concentration in vitro decreases human leukocyte activation. Magnes Res 2002;15:43–48.

    PubMed  CAS  Google Scholar 

  90. Mooren FC, Golf SW, Volker K. Effect of magnesium on granulocyte function and on the exercise induced inflammatory response. Magnes Res 2003;16:49–58.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

Laires, M.J., Monteiro, C. (2007). Exercise and Magnesium. In: Nishizawa, Y., Morii, H., Durlach, J. (eds) New Perspectives in Magnesium Research. Springer, London. https://doi.org/10.1007/978-1-84628-483-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-483-0_14

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-388-8

  • Online ISBN: 978-1-84628-483-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics