Skip to main content

Fuzzy Logic for Transportation Guidance: Developing Fuzzy Controllers for Maintaining an Inter-Vehicle Safety Headway

  • Chapter
Advanced Fuzzy Logic Technologies in Industrial Applications

Part of the book series: Advances in Industrial Control ((AIC))

  • 2047 Accesses

9.4 Conclusion

This study shows that powerful controllers can be built using global navigation satellite systems (GNSS) for data input. It also demonstrates that, when the right techniques are used, these controllers outperform classical systems and provide a different point of view for implementing intelligent transportation systems.

Furthermore, it illustrates that the combination of ACC+Stop&Go relieves human drivers trapped in traffic jams of tedious tasks, thus improving driving safety.

In our opinion, fully automated driving is utopian and will not be achieved for many years. However, the experiments described here are a step in this direction. Our applications belong to the field of driving safety components and can be classed as driving aids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Willie D. Jones, “Keeping Cars from Crashing,” IEEE Spectrum, September 2001, pp 40–45.

    Google Scholar 

  2. Jesse Crosse, “Tomorrow’s World,” Automotive World, January/February 2000, pp 46–48.

    Google Scholar 

  3. STARDUST, “Scenarios and Evaluation Framework for City Case Studies”, European Commission Fifth Framework Programme Energy, Environment and Sustainable Development Programme Key Action 4: City of Tomorrow and Cultural Heritage, Deliverable 2, 3, 2002.

    Google Scholar 

  4. Colleen Serafin, “Driver Preferences and Usability of Adjustable Distance Controls for an Adaptive Cruise Control (ACC) System,” Ford Motor Company Systems Technology Inc. October 1996.

    Google Scholar 

  5. P. A. Ioannou and C. C. Chien, “Autonomous Intelligent Cruise Control”, IEEE Transactions on Vehicular Technology, pp 657–672, Vol. 42, Nov 1993.

    Article  Google Scholar 

  6. R. Holve, P. Protzel, J. Bernasch, K. Naab, “Adaptive Fuzzy Control for Driver Assistance in Car-Following”, Proceedings of the 3rd European Congress on Intelligent Techniques and Soft Computing — EUFIT’95, Aachen, Germany, pp 1149–1153, Aug. 1995.

    Google Scholar 

  7. “Future-Oriented Technologies Revolutionize Active Vehicle Safety. Driver-assistance systems of the future”, Volkswagen of America News, 20 January 2004.

    Google Scholar 

  8. J. I. Suárez, B. M. Vinagre, Y. Q. Chen, “Spatial Path Tracking of an Autonomous Industrial Vehicle Using Fractional Order Controllers”, ICAR 2003 Congress, Portugal, 2003.

    Google Scholar 

  9. E. J. Rossetter, J. C. Gerdes, “Performance Guarantees for Hazard Based Lateral Vehicle Control”, proceedings of the 2002 IMECE Conference, 2002.

    Google Scholar 

  10. S. Bentalva et al., “Fuzzy Path Tracking Control of a Vehicle”, IEEE International Conference on Intelligent Vehicles, pp 195–200, 1998.

    Google Scholar 

  11. S. Sheikholeslam and C. A. Desoer. “Design of Decentralized Adaptive Controllers for a Class of Interconnected Nonlinear Dynamical Systems: Part I”, PATH Technical Memorandum 92-1, Department of Electrical Engineering and Computer Sciences, Institute of Transportation Studies University of California, Berkeley, February 3,1992.

    Google Scholar 

  12. R. Holve, P. Protzel, K. Naab, “Generating Fuzzy Rules for the Acceleration Control of an Adaptive Cruise Control System”, Fuzzy Information Processing Society, 1996. NAFIPS. Biennal Conference of the North American, pp 451–455, 1996.

    Google Scholar 

  13. D. A. Pomerleau, “ALVINN: An Autonomous Land Vehicle In a Neural Network”, Advances in Neural Information Processing Systems 1, Morgan Kaufmann, 1989.

    Google Scholar 

  14. M. Sugeno, “An Introductory Survey to Fuzzy Control,” Information Sciences 36, 1985.

    Google Scholar 

  15. T. Takagi and M. Sugeno, “Fuzzy Identification of Systems and Its Applications to Modelling and Control”, IEEE Transactions on Systems, Man and Cybernetics, Vol. SMC-15, No. 1, pp 116–132, January/February, 1985.

    Google Scholar 

  16. L. A. Zadeh, “Fuzzy Sets”, Information and Control 8, pp. 338–353, 1965.

    Article  MathSciNet  Google Scholar 

  17. E. H. Mamdani, “Application of Fuzzy Algorithms for Control of a Simple Dynamic Plant”, Proc. IEE, 121,12, pp 1585–1588, 1974.

    Google Scholar 

  18. J. E. Naranjo, Carlos González, Ricardo García, Teresa de Pedro, and Rodolfo E. Haber “Power Steering Control Architecture for Automatic Driving”, IEEE Transactions on Intelligent Transportation Systems, Vol. 6, No. 4, pp 406–415, December 2005.

    Article  Google Scholar 

  19. M. Sugeno, I. Hirano, S. Nakamura and S. Kotsu, “Development of an Intelligent Unmanned Helicopter”, IEEE International Conference on Fuzzy Systems, Vol. 5, pp 33–4, 1995.

    Google Scholar 

  20. M. Sugeno, “Industrial Applications of Fuzzy Control”, North Holland, New York, 1985.

    Google Scholar 

  21. M. Persson, F. Botling, E. Hesslow, R. Johansson, “Stopο Controller for Adaptive Cruise Control”, Control Applications, 1999, Proceedings of the 1999 IEEE Conference on, Vol. 2, pp 1692–1697, 1999.

    Google Scholar 

  22. S. Kato, S. Tsugawa, K. Tokuda, T. Matsui, H. Fujiri, “Vehicle Control Algorithms for Cooperative Driving With Automated Vehicles and Intervehicle Communications”, IEEE Transactions on Intelligent Transportation Systems, Vol. 3, No. 3, September 2002, pp 155–161.

    Article  Google Scholar 

  23. Q. Chen, U. Ozguner, K. Redmill, “Ohio State University at the DARPA Grand Challenge: Developing a Completely Autonomous Vehicle”, IEEE Intelligent Systems, Sep–Oct 2004, Vol. 19, No. 5, pp 8–11.

    Article  Google Scholar 

  24. Mark Bursa. “Big names invest heavily in advanced ITS technology,” ISATA Magazine December/January 2000, pp 24–30.

    Google Scholar 

  25. JM. Blosseville, M. Parent. “The French Program: La Route Automatisee,” IEEE Intelligent Systems, May/June 2000, pp 10–13.

    Google Scholar 

  26. California PATH Program. “Literature Review of ADAS/AVG (AVCSS) for Japan and United States,” June 27, 2001.

    Google Scholar 

  27. R. Bishop, “Intelligent Vehicle Applications Worldwide,” IEEE Intelligent Systems, January/February, 2000, pp 78–81.

    Google Scholar 

  28. L. A. Zadeh, “Fuzzy Languages and their Relation to Human and Machine Intelligence”, Man and Computer Proc. Int. Conf., Bordeaux, pp 130–165, 1970.

    Google Scholar 

  29. L. A. Zadeh, “Approximate Reasoning Based on Fuzzy Logic”, Memorandum No. UCB/ERL M79/32, Electronics Research Laboratory, College of Engineering, University of California, Berkeley, May 1979.

    Google Scholar 

  30. L. A. Zadeh, “A Theory of Approxinate Reasoning”, Machine Intelligence 9, J. E. Hayes, D. Michie and L. I. Mikulich, editors, Wiley, 1979.

    Google Scholar 

  31. Lofti A. Zadeh, “A New Direction in AI, Towards a Computational Theory of Perceptions,” AI Magazine. Spring 2001, pp 73–84.

    Google Scholar 

  32. R. Garcia and T. De Pedro, “Modeling a Fuzzy Coprocessor and Its Programming Language,” Mathware and Soft Computing Vol. V, No. 2–3, 1998, pp 167–174

    Google Scholar 

  33. R. Garcia, T. De Pedro, J. E. Naranjo, J Reviejo and C. Gonzalez, “Frontal and Lateral Control for Unmanned Vehicles in Urban Tracks,” IEEE Intelligent Vehicle Symposium, June, 2002.

    Google Scholar 

  34. A.V. Patel, B.M. Mohan, “Some Numerical Aspect of Center of Area Defuzzification Method”, Fuzzy Sets and Systems, 132, pp 401, 409, 2002.

    Article  MathSciNet  Google Scholar 

  35. Radix, J.-C. “Introduction au Filtrage Numèrique”. Eyrolles, Paris, 1970.

    MATH  Google Scholar 

  36. JE Naranjo, “Sistemas de Comunicaciones Inalámbricos Aplicados a la Conducción Automática de Vehículos,” Degree Thesis Universidad Politécnica de Madrid Spain, September 2001.

    Google Scholar 

  37. “Evaluation of the Intelligent Cruise Control System. Vol. I — Study Results”, Research and Special Programs Administration, Volpe National Transportation Systems Center, Cambridge, MA 02142-1093.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Naranjo, J.E., González, C., García, R., de Pedro, T. (2006). Fuzzy Logic for Transportation Guidance: Developing Fuzzy Controllers for Maintaining an Inter-Vehicle Safety Headway. In: Bai, Y., Zhuang, H., Wang, D. (eds) Advanced Fuzzy Logic Technologies in Industrial Applications. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-84628-469-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-469-4_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-468-7

  • Online ISBN: 978-1-84628-469-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics