Skip to main content

Fuzzy Logic for Flight Control I: Nonlinear Optimal Control of Helicopter Using Fuzzy Gain Scheduling

  • Chapter

Part of the book series: Advances in Industrial Control ((AIC))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. McLean, Automatic Flight Control System, Prentice Hall, 1990, pp 451–489.

    Google Scholar 

  2. F. L. Lewis and V. L Syrmos, Optimal Control, Wiley., 1995, pp 359–376.

    Google Scholar 

  3. B. D. O. Anderson and J. B. Moore, Optimal Control: Linear Quadratic Methods, Prentice Hall, 1990, pp 101–125.

    Google Scholar 

  4. M. Margaliot and G. Langholz, “Hyperbolic Optimal Control and Fuzzy Control,” IEEE Transactions on Systems, Man and Cybernetics-Part A: Systems and Humans, Vol. 29, No. 1, January 1999, pp 1–10.

    Article  MathSciNet  Google Scholar 

  5. B. Kadmiry, P. Bergsten, and D. Driankov, “Autonomous Helicopter Control Using Fuzzy Gain Scheduling,” Proceedings of the 2001 IEEE International Conference Robotics & Automation Seoul, Korea, May 21–26, 2001, pp 2981–2985.

    Google Scholar 

  6. J. Yen and R. Langari, Fuzzy Logic: Intelligence, Control, and Information, Prentice-Hall, New Jersey; 1999, pp 4–6.

    Google Scholar 

  7. K. Tanaka and M. Sugeno, “Stability Analysis and Design of Fuzzy Control Systems,” Fuzzy Sets and System, Vol. 45, No. 2, 1992, pp 135–156.

    Article  MathSciNet  Google Scholar 

  8. L. Fortuna, G. Rizzotto, M. Lavorgna, G. Nunnari, M. G. Xibilia, and R. Caponetto, Soft Computing, Springer, 2000, pp 5–21.

    Google Scholar 

  9. B. Kadmiry and D. Driankov, “Autonomous Helicopter Control Using Linguistic and Model-Based Fuzzy Control,” Proceedings of the 2001 IEEE International Symposium on Intelligent Control, Mexico City, September 5–7, 2001, pp 348–352.

    Google Scholar 

  10. D. Driankov, R. Palm, and U. Rehfuess, “A Takagi-Sugeno Fuzzy Gain-Scheduler,” Proceedings of IEEE Conference Fuzzy Systems, New Orleans, Florida, USA, 1996, pp 1053–1059.

    Google Scholar 

  11. C. Calvalcante, J. Cardoso, J. J. G. Ramos, and O. R. Neves, “Design and Tuning of a Helicopter Fuzzy Controller,” IEEE Int. Conference on Fuzzy Systems, 1995, pp 1549–1554.

    Google Scholar 

  12. D. McLean and H. Matsuda, “Helicopter Station-Keeping: Comparing LQR, Fuzzy Logic and Neural-Net Controllers,” Engineering Applications of Artificial Intelligence, Vol. 11, 1998, pp 411–418.

    Article  Google Scholar 

  13. C. Phillips, C. Karr, and G. Walker, “Helicopter flight control: with fuzzy logic and genetic algorithms,” Engineering Applications of Artificial Intelligence, Vol. 9, 1996, pp 175–184.

    Article  Google Scholar 

  14. K. Sprague, V. Gavrilets, D. Dugail, B. Matter, and E. Feron, “Design and Applications of an Avionics System for a Miniature Acrobatic Helicopter,” DASC, the 20 th Conference, 2001, pp 3.C.5/1–3.C.5/10

    Google Scholar 

  15. G. D. Padfield, Heliopter Flight Dynamics: The Theory and Application of Flying Qualities and Simulation Modeling, AIAA, 1996, pp 87–276.

    Google Scholar 

  16. D. W. Chiou, C. D. Yang, and R. F. Liu, “Establishing Helicopter Nonlinear Flight Simulation Environment,” Transactions of the Aeronautical Society of the Republic of China, Vol. 32, No. 3, July 2000, pp 203–221.

    Google Scholar 

  17. E. R. Pinch, Optimal Control And The Calculus of Variations, Oxford Science Publication; 1993, pp 163–168.

    Google Scholar 

  18. F. M. Callier and C. A. Desor, Linear System Theory, New York: Springer-Verlag, 1991, pp 330–346.

    MATH  Google Scholar 

  19. S. J. Wu and C. T. Lin, “Optimal Fuzzy Controller Design: Local Concept Approach,” IEEE Transactions on Fuzzy Systems, Vol. 8, No. 2, April 2000, pp 171–185.

    Article  Google Scholar 

  20. M. Vidyasagar, Nonlinear System Analysis, Prentice Hall, 1993, pp 135–264.

    Google Scholar 

  21. Gwo-Ruey Yu, “Nonlinear Optimal Control of Helicopter Using Fuzzy Gain Scheduling,” IEEE Int. Conference on Systems, Man and Cybernetics, 2005, pp 3313–3318.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Yu, GR. (2006). Fuzzy Logic for Flight Control I: Nonlinear Optimal Control of Helicopter Using Fuzzy Gain Scheduling. In: Bai, Y., Zhuang, H., Wang, D. (eds) Advanced Fuzzy Logic Technologies in Industrial Applications. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-84628-469-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-469-4_14

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-468-7

  • Online ISBN: 978-1-84628-469-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics