Skip to main content

Part of the book series: Topics in Bone Biology ((TBB,volume 3))

Abstract

Bone is a living material composed of cells and an extracellular matrix (ECM) that has a multi-component structure [4]. The ECM of bone is composed of three phases: an inorganic mineral phase, an organic phase, and an aqueous phase. The inorganic phase of bone is calcium hydroxyapatite, Ca10(PO4)6(OH)2. The organic phase consists primarily of collagen fibers and associated noncollagenous ECM proteins. The molecular configuration of collagen provides binding sites for hydroxyapatite crystal nucleation and growth. The ECM is created and maintained by active bone cells: osteoblasts, osteoclasts, and osteocytes. Osteoblasts and osteocytes are involved in bone formation and maintenance, respectively, whereas osteoclasts promote resorption of bone [2], [99]. Bone is, in general, dynamic and constantly being remodeled by the action of these cells, and thus can regenerate itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altuna GW, Walker DA, Freeman E (1995) Surgically assisted-rapid orthopedic lengthening of the maxilla in primates: relapse following distraction osteogenesis. Int J Adult Orthod Orthog Surg 10:269–275.

    CAS  Google Scholar 

  2. Baron RR, Ravesloot JH, Neff L, Chakraborty M, Chatterjee D, Lomri A, Horne WC (1993) Cellular and molecular biology of the osteoclast. In: Noda M, ed. Cellular and Molecular Biology of Bone. Academic Press, San Diego, pp 446–495.

    Google Scholar 

  3. Beaupré GS, Orr TE, Carter DR (1990) An approach for time-dependent bone modeling and remodeling—theoretical development. J Orthop Res 8: 651–661.

    PubMed  Google Scholar 

  4. Bilezikian JP, Raisz L, Rodan GA (2002) Principles of Bone Biology, 2nd ed. Academic Press, San Diego.

    Google Scholar 

  5. Block MS, Kent J, Guerra LR (1997) Implants in Dentistry W.B. Saunders Co, Philadelphia.

    Google Scholar 

  6. Bolander M (1994) Regulation of fracture repair and synthesis of matrix macromolecules. In: Brighton CT, Friedlaender GE, Lane JM. eds. Bone Formation and Repair. American Academy of Orthopaedic Surgeons, Rosemont, IL. pp 185–196.

    Google Scholar 

  7. Bonewald L (2002) Osteocytes: a proposed multifunctional bone cell. J Musculoskelet Neuronal Interact 2:239–241.

    PubMed  CAS  Google Scholar 

  8. Borodkin JL, Eadie JS, Choi K, Hollister SJ, Goldstein SA (1994) The effect of mechanical stimuli on bone ingrowth into porous coated implants. In: 40th Meeting ORS, New Orleans, p 582.

    Google Scholar 

  9. Boskey A (1989) Noncollagenous matrix proteins and their role in mineralization. Bone Miner 6:111–123.

    PubMed  CAS  Google Scholar 

  10. Brault VM, Moore R, Kutsch S, Ishibashi M, Rowitch DH, McMahon AP, Sommer L, Boussadia O, Kemler R (2001) Inactivation of the β-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development 128:1265–1273.

    Google Scholar 

  11. Broadus AE, Stewart AF (1996) Parathyroid hormone-related protein: structure, processing, and physiological actions. In: Bilezikian JP, Levine AM, Marcus R, eds. The Parathyroids. Raven Press, New York, pp 259–294.

    Google Scholar 

  12. Butler WT, Ridall AL, McKee MD (1996) Osteopontin. In: Bilezikian JP, Raisz L, Rodan GA, eds. Principles of Bone Biology. Academic Press, San Diego, pp 167–182.

    Google Scholar 

  13. Caplan A (1991) Mesenchymal stem cells. J Orthop Res 9:641–650.

    PubMed  CAS  Google Scholar 

  14. Carter D (1987) Mechanical loading history and skeletal biology. J Biomech 20:1095–1109.

    PubMed  CAS  Google Scholar 

  15. Carter DR, Beaupre GS, Giori NJ, Helms JA (1998) Mechanobiology of skeletal regeneration. Clin Orthop Relat Res 355:S41–S55.

    PubMed  Google Scholar 

  16. Carter DG, Giori NJ (1990) Effect of mechanical stress on tissue differentiation in bony implant bed. In: Davies J, ed. The Bone-Biomaterial Interface. University of Toronto Press, Toronto, pp 367–379.

    Google Scholar 

  17. Celil AH, Hollinger JO, Campbell PG (2005) Osx transcriptional regulation is mediated by additional pathways to BMP2/Smad signaling. J Cell Biochem 95:518–528.

    PubMed  CAS  Google Scholar 

  18. Chien SSJ (1998) Effects of hemodynamic forces on gene expression and signal transduction in endothelial cells. Biol Bull 194:390–393.

    PubMed  CAS  Google Scholar 

  19. Chow JW, Fox SW, Lean JM, Chambers TJ (1998) Role of nitric oxide and prostaglandins in mechanically induced bone formation. J Bone Miner Res 13: 1039–1044.

    PubMed  CAS  Google Scholar 

  20. Chow JW, Jagger CJ, Chambers TJ (1993) Characterization of osteogenic response to mechanical stimulation in cancellous bone of rat caudal vertebrae. Am J Physiol 265:E340–E347.

    PubMed  CAS  Google Scholar 

  21. Claes L, Eckert-Hubner K, Augat P (2002) The effect of mechanical stability on local vascularization and tissue differentiation in callus healing. J Orthop Res 20:1099–1105.

    PubMed  Google Scholar 

  22. Clark RAF (1988) The Molecular and Cellular Biology of Wound Repair, 2nd ed. Plenum Press, New York.

    Google Scholar 

  23. Colleran PN, Wilkerson MK, Bloomfield SA, Suva LJ, Turner RT, Delp MD (2000) Alternatives in skeletal perfusion with simulated microgravity: a possible mechanism for bone remodeling. J Appl Physiol 89: 1046–1054.

    PubMed  CAS  Google Scholar 

  24. Connolly JF, Hahn H, Davy D (1978) Fracture healing in weight-bearing and nonweight-bearing bones. J Trauma 18:766–770.

    PubMed  CAS  Google Scholar 

  25. Cope JBS, Mikhail L (2000) Regenerate bone formation and remodeling during mandibular osteodistraction. Angle Ortho 70:99–111.

    CAS  Google Scholar 

  26. Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C, Smith E, Bonadio J, Goldstein S, Gundberg C, Bradley A, Karsenty G (1996) Increased bone formation in osteocalcin-deficient mice. Nature 382: 448–452.

    PubMed  CAS  Google Scholar 

  27. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89:747–754.

    PubMed  CAS  Google Scholar 

  28. Egger EL, Gottsauner-Wolf F, Palmer J, Aro HT, Chao EY (1993) Effects of axial dynamization on bone healing. J Trauma 34:185–192.

    PubMed  CAS  Google Scholar 

  29. Escobar V, Epker BN (1998) Alveolar bone growth in response to endosteal implants in two patients with ectodermal dysplasia. Int J Oral Maxillofac Surg 27:445–447.

    PubMed  CAS  Google Scholar 

  30. Evans GL, Morey-Holton E, Turner RT (1998) Spaceflight has compartment-and gene-specific effects on mRNA levels for bone matrix proteins in rat femur. J Appl Physiol 84:2132–2137.

    PubMed  CAS  Google Scholar 

  31. Faber J, Azevedo RB, Bao SN (2005) Distraction osteogenesis may promote periodontal bone regeneration. J Dent Res 84:757–761.

    PubMed  CAS  Google Scholar 

  32. Ferguson CM, Alpern E, Miclau T, Helms JA (1999) Does adult fracture repair recapitulate embryonic skeletal formation? Mech Dev 87:57–66.

    PubMed  CAS  Google Scholar 

  33. Ferguson CM, Miclau T, Hu D, Alpern E, Helms JA (1998) Common molecular pathways in skeletal morphogenesis and repair. Ann NY Acad Sci 23:33–42.

    Google Scholar 

  34. Franceschi R (1999) The developmental control of osteoblast-specific gene expression: role of specific transcription factors and the extracellular matrix environment. Crit Rev Oral Biol Med 10:40–57.

    PubMed  CAS  Google Scholar 

  35. Franzen AH, Heinegard D (1985) Isolation and characterization of two sialoproteins present only in bone calcified matrix. Biochem J 232:715–724.

    PubMed  CAS  Google Scholar 

  36. Frost H (1987) Bone “mass” and the “mechanostat”: a proposal. Anat Rec 219:1–9.

    PubMed  CAS  Google Scholar 

  37. Frost H (1986) Intermediary Organization of the Skeleton. Vol 1. CRC Press, Boca Raton, FL.

    Google Scholar 

  38. Frost H (1990) Skeletal structural adaptations to mechanical usage (SATMU): 1. Redefining Wolff’s law: the remodeling problem. Anat Rec 226: 414–422.

    PubMed  CAS  Google Scholar 

  39. Fung Y (1977) A First Course In Continuum Mechanics, 2nd ed. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  40. Gao Y, Jheon A, Nourkeyhani H, Kobayashi H, Ganss B (2004) Molecular cloning, structure, expression, and chromosomal localization of the human Osterix (SP7) gene. Gene 341:101–110.

    PubMed  CAS  Google Scholar 

  41. Gaur TL, Lengner CJ, Hovhannisyan H, Bhat RA, Bodine PV, Komm BS, Javed A, van Wijnen AJ, Stein JL, Stein GS, Lian JB. (2005) Canonical WNT signaling promotes osteogenesis by directly stimulating RUNX2 gene expression. J Biol Chem 280:33132–33140.

    PubMed  CAS  Google Scholar 

  42. Globus RK, Patterson-Buckendahl P, Gospodarowicz D (1988) Regulation of bovine bone cell proliferation by fibroblast growth factor and transforming growth factor-beta. Endocrinology 123:98–105.

    PubMed  CAS  Google Scholar 

  43. Goldstein SA, Matthews LS, Kuhn J, Hollister SJ (1991) Trabecular bone remodeling: an experimental model. J Biomech 24(Suppl):135–150.

    PubMed  Google Scholar 

  44. Goodship AE, Cunningham JL, Kenwright J (1998) Strain rate and timing of stimulation in mechanical modulation of fracture healing. Clin Orthop Rel Res 355S:S105–S115.

    Google Scholar 

  45. Guedes JM, Kikuchi N (1990) Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Comput Meth Appl Mech Eng 83:143–198.

    Google Scholar 

  46. Guldberg RE, Caldwell NJ, Guo XE, Goulet RW, Hollister SJ, Goldstein SA (1997) Mechanical stimulation of tissue repair in the hydraulic bone chamber. J Bone Miner Res 12:1295–1302.

    PubMed  CAS  Google Scholar 

  47. Guldberg RE, Richards M, Caldwell NJ, Kuelske CL, Goldstein SA (1997) Trabecular bone adaptation to variations in porous-coated implant topology. J Biomech 30:147–153.

    PubMed  CAS  Google Scholar 

  48. Haegel HL, Larue L, Ohsugi M, Fedorov L, Herrenknecht K, Kemler R (1995) Lack of beta-catenin affects mouse development at gastrulation. Development 121:3529–3537.

    PubMed  CAS  Google Scholar 

  49. Halloran BP, Nissenson RA (1992) Parathyroid Hormone-Related Protein: Normal Physiology and its Role in Cancer. CRC Press, Boca Raton, FL.

    Google Scholar 

  50. Harris SA, Zhang M, Kidder LS, Evans GL, Spelsberg TC, Turner RT (2000) Effects of orbital spaceflight on human osteoblastic cell physiology and gene expression. Bone 26:325–331.

    PubMed  CAS  Google Scholar 

  51. Henthorn P (1996) Alkaline phosphatase. In: Bilezikian JP, Raisz L, Rodan GA, eds. Principles of Bone Biology. Academic Press, San Diego, pp 197–206.

    Google Scholar 

  52. Hollinger JO, Buck DC, Bruder SP (1999) Biology of bone healing: its impact on clinical therapy. In: Lynch SE, Genco R, Marx RE, eds. Tissue Engineering: Applications in Maxillofacial Surgery and Periodontics. Quintessence Publishing Co, Chicago, pp 17–54.

    Google Scholar 

  53. Hollister SJ, Fyhrie DP, Jepsen KJ, Goldstein SA (1991) Application of homogenization theory to the study of trabecular bone mechanics. J Biomech 24:825–839.

    PubMed  CAS  Google Scholar 

  54. Hollister SJ, Ko CC, Kohn DH (1993) Bone density around screw thread dental implants predicted using topology optimization. In: Advances in Bioengineering. Vol 24. ASME, New York, pp 339–342.

    Google Scholar 

  55. Huiskes RR, Ruimerman R, van Lenthe GH, Jansen JD (2000) Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405:704–706.

    PubMed  CAS  Google Scholar 

  56. Hunter GK, Goldberg HA (1993) Nucleation of hydroxyapatite by bone sialoprotein. Proc Natl Acad Sci USA 90:8562–8565.

    PubMed  CAS  Google Scholar 

  57. Ilizarov GA (1990) Clinical application of the tension-stress effect for limb lengthening. Clin Orthop Relat Res 250:8–26.

    PubMed  Google Scholar 

  58. Ilizarov GA (1989) The tension-stress effect on the genesis and growth of tissues: Part I. The influence of stability of fixation and soft-tissue preservation. Clin Orthop Relat Res 238:249–281.

    PubMed  Google Scholar 

  59. Ilizarov GA (1989) The tension-stress effect on the genesis and growth of tissues: Part II. The influence of the rate and frequency of distraction. Clin Orthop Relat Res 239:263–285.

    PubMed  Google Scholar 

  60. Ingber D (1998) Cellular basis of mechanotransduction. Biol Bull 194:323–327.

    PubMed  CAS  Google Scholar 

  61. Jahangiri L, Devlin H, Ting K, Nishimura I (1998) Current perspectives in residual ridge remodeling and its clinical implications: a review. J Prosthet Dent 80:224–237.

    PubMed  CAS  Google Scholar 

  62. Jarvinen MJ, Lehto MU (1993) The effects of early mobilisation and immobilisation on the healing process following muscle injuries. Sports Med 15:78–79.

    PubMed  CAS  Google Scholar 

  63. Jingushi S, Bolander ME (1991) Biological cascades of fracture healing as models for bone-biomaterial interfacial reactions. In: Davies JE, ed. The Bone Biomaterial Interface. University of Toronto Press, Toronto, pp 250–262.

    Google Scholar 

  64. Johnston LJ (1996) Functional appliances: a mortgage on mandibular position. Austr Orthod 14: 154–157.

    Google Scholar 

  65. Khouw FE, Goldhaber P (1970) Changes in vasculature of the periodontium associated with tooth movement. Arch Oral Biol 15:1125–1132.

    PubMed  CAS  Google Scholar 

  66. Kinne RW, Fisher LW (1987) Keratan sulfate proteoglycan in rabbit compact bone is sialoprotein II. J Biol Chem 262:10206–10211.

    PubMed  CAS  Google Scholar 

  67. Ko CC (1994) Mechanical Characterization of Implant/Tissue Interfaces. University of Michigan Press, Ann Arbor.

    Google Scholar 

  68. Ko CC, Douglas WH, DeLong R, Rohrer MD, Swift JQ, Hodges JS, An K-N, Ritman EL (2003) Effects of implant healing time on crestal bone loss of a controlled-load dental implant. J Dent Res 82:585–591.

    PubMed  CAS  Google Scholar 

  69. Ko CC, Kohn DH, Hollister SJ (1996) Effective anisotropic elastic constants of bimaterial interphases: comparison between experimental and analytical techniques. J Mater Sci Mater Med 7:109–117.

    CAS  Google Scholar 

  70. Ko CC, Kohn DH, Hollister SJ (1992) Micromechanics of implant/tissue interfaces. J Oral Implantol 18: 220–230.

    PubMed  CAS  Google Scholar 

  71. Ko CC, Swift JQ, DeLong R, Douglas WH, Kim YI, An KN, Chang CH, Huang HL (2002) An intra-oral hydraulic system for controlled loading of dental implants. J Biomech 35:863–869.

    PubMed  Google Scholar 

  72. Kobayashi T, Kronenberg H (2005) Minireview: transcriptional regulation in development of bone. Endocrinology 46:1012–1017.

    Google Scholar 

  73. Koga T, Matsui Y, Asagiri M, Kodama T, de Crombrugghe B, Nakashima K, Takayanagi H (2005) NFAT and Osterix cooperatively regulate bone formation. Nat Med 8:880–885.

    Google Scholar 

  74. Kokich V (1996) Esthetics: the orthodontic-periodontic restorative connection. Semin Orthod 2:21–30.

    PubMed  CAS  Google Scholar 

  75. Kokich VJ (2002) Congenitally missing teeth: orthodontic management in the adolescent patient. Am J Orthod Dentofacial Orthop 121:594–595.

    PubMed  Google Scholar 

  76. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89:755–764.

    PubMed  CAS  Google Scholar 

  77. Kostenuik PJ, Harris J, Halloran BP, Turner RT, Morey-Holton ER, Bikle DD (1999) Skeletal unloading causes resistance of osteoprogenitor cells to parathyroid hormone and to insulin-like growth factor-I. J Bone Miner Res 14:21–31.

    PubMed  CAS  Google Scholar 

  78. Landry P, Sadasivan K, Marino A, Albright J (1997) Apoptosis is coordinately regulated with osteoblast formation during bone healing. Tissue Cell 29: 413–419.

    PubMed  CAS  Google Scholar 

  79. Landry PS, Marino AA, Sadasivan KK, Albright JA (1996) Bone injury response. An animal model for testing theories of regulation. Clin Orthop Rel Res 332:260–273.

    Google Scholar 

  80. Lane TF, Sage EH (1994) The biology of SPARC, a protein that modulates cell-matrix interactions. FASEB J 8:163–173.

    PubMed  CAS  Google Scholar 

  81. Latta LL, Sarmiento A, Tarr RR (1980) The rationale of functional bracing of fractures. Clin Orthop Relat Res 146:28–36.

    PubMed  Google Scholar 

  82. Le AX, Miclau T, Hu D, Helms JA (2001) Molecular aspects of healing in stabilized and non-stabilized fractures. J Orthop Res 19:78–84.

    PubMed  CAS  Google Scholar 

  83. Mayahara H, Ito T, Nagai H, Miyajima H, Tsukuda R, Taketomi S, Mizoguchi J, Kato K (1993) In vivo stimulation of endosteal bone formation by basic fibroblast growth factor in rats. Growth Factors 9:73–80.

    PubMed  CAS  Google Scholar 

  84. McLeod KJ, Rubin C (1992) Sensitivity of the bone remodeling response to the frequency of applied strain. Trans Orthop Res Soc 17:533.

    Google Scholar 

  85. Misch CE (1999) Contemporary Implant Dentistry, 2nd ed. Mosby, St. Louis.

    Google Scholar 

  86. Moalli MR, Caldwell NJ, Patil PV, Goldstein SA (2000) An in vivo model for investigations of mechanical signal transduction in trabecular bone. J Bone Miner Res 15:1346–1353.

    PubMed  CAS  Google Scholar 

  87. Moon RT, Bowerman B, Boutros M, Perrimon N (2002) The promise and perils of Wnt signaling through beta-catenin. Science 296:1644–1646.

    PubMed  CAS  Google Scholar 

  88. Mundlos S, Otto F, Mundlos C, Mulliken JB, Aylsworth AS, Albright S, Lindhout D, Cole WG, Henn W, Knoll JHM, Owen MJ, Mertelsmann R, Zabel BU, Olsen BR (1997) Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 89:773–779.

    PubMed  CAS  Google Scholar 

  89. Nakamura K, Kawaguchi H, Aoyama I, Hanada K, Hiyama Y, Awa T, Tamura M, Kurokawa T (1997) Stimulation of bone formation by intraosseous application of recombinant basic fibroblast growth factor in normal and ovariectomized rabbits. J Orthop Res 15:307–313.

    PubMed  CAS  Google Scholar 

  90. Nakamura K, Kurokawa T, Kawaguchi H, Kato T, Hanada K, Hiyama Y, Aoyama I, Nakamura T, Tamura M (1997) Stimulation of endosteal bone formation by local intraosseous application of basic fibroblast growth factor in rats. Rev Rheum Engl Ed, 64:101–105.

    CAS  Google Scholar 

  91. Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108:17–29.

    PubMed  CAS  Google Scholar 

  92. Park SH, O’Connor K, McKellop H, Sarmiento A (1998) The influence of active shear or compressive motion on fracture-healing. J Bone Joint Surg 80A: 868–878.

    Google Scholar 

  93. Pedersen DR, Brown TD, Brand RA (1991) Interstitial bone stress distributions accompanying ingrowth of a screen-like prosthesis anchorage layer. J Biomech 24:1131–1142.

    PubMed  CAS  Google Scholar 

  94. Percinoto C, Vieira AE, Barbieri CM, Melhado FL, Moreira KS (2001) Use of dental implants in children: a literature review. Quintessence Int 32: 381–383.

    PubMed  CAS  Google Scholar 

  95. Proffit WR (2000) Contemporary Orthodontics, 3rd ed. Mosby, St. Louis.

    Google Scholar 

  96. Qin YX, Rubin CT, McLeod KJ (1998) Nonlinear dependence of loading intensity and cycle number in the maintenance of bone mass and morphology. J Orthop Res 16:482–489.

    PubMed  CAS  Google Scholar 

  97. Raab-Cullen DM, Thiede MA, Petersen DN, Kimmel DB, Recker RR (1994) Mechanical loading stimulates rapid changes in periosteal gene expression. Calcif Tissue Int 55:473–478.

    PubMed  CAS  Google Scholar 

  98. Richards MG, James A, Weiss JA, Waanders NA, Schaffler MB, Goldstein SA (1998) Bone regeneration and fracture healing: experience with distraction osteogenesis model. Clin Orthop Relat Res 355S: S191–S204.

    Google Scholar 

  99. Roodman G (1996) Advances in bone biology: the osteoclast. Endocr Rev 17:308–332.

    PubMed  CAS  Google Scholar 

  100. Rubin CT, Lanyon LE (1985) Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int 37:411–417.

    PubMed  CAS  Google Scholar 

  101. Samchukov ML, Cope JB, Cherkashin AM (2001) Biologic basis of new bone formation under the influence of tension stress, in Samchukov ML, Cope JB, Cherkashin AM, eds. Craniofacial Distraction Osteogenesis, Mosby, Louis pp 21–41.

    Google Scholar 

  102. Sandberg MM, Aro HT, Vuorio EI (1993) Gene expression during bone repair. Clin Orthop Relat Res 289: 292–312.

    PubMed  Google Scholar 

  103. Sarmiento A, Latta LL, Tarr RR (1984) The effects of function in fracture healing and stability. Instr Course Lect 33:83–106.

    PubMed  CAS  Google Scholar 

  104. Sarmiento A, Schaeffer JF, Beckerman L, Latta LL, Enis JE (1977) Fracture healing in rat femora as affected by functional weight-bearing. J Bone Joint Surg 59A:369–375.

    Google Scholar 

  105. Sato M, Ochi T, Nakase T, Hirota S, Kitamura Y, Nomura S, Yasui N (1999) Mechanical tension-stress induces expression of bone morphogenetic protein (BMP)-2 and BMP-4, but not BMP-6, BMP-7, and GDF-5 mRNA, during distraction osteogenesis. J Bone Miner Res 14:1084–1095.

    PubMed  CAS  Google Scholar 

  106. Sato W, Matsushita T, Nakamura K (1999) Acceleration of increase in bone mineral content by lowintensity ultrasound energy in leg lengthening. J Ultrasound Med 18:699–702.

    PubMed  CAS  Google Scholar 

  107. Schenk RK, Hunziker EB (1994) Histologic and ultrastructural features of fracture healing. In: Brighton CT, Friedlaender G, Lane JM, eds. Bone Formation and Repair. American Academy of Orthopaedic Surgeons, Rosemont, IL, pp 117–146.

    Google Scholar 

  108. Seyfer AE, Hollinger JO (1994) Bone Repair and Regeneration. WB Saunders, Philadelphia.

    Google Scholar 

  109. Sibonga JD, Zhang M, Evans GL, Westerlind KC, Cavolina JM, Morey-Holton E, Turner RT (2000) Effects of spaceflight and simulated weightlessness on longitudinal bone growth. Bone 27:535–540.

    PubMed  CAS  Google Scholar 

  110. Stocum D (1995) Wound Repair, Regeneration and Artificial Tissues. RG Landes, Austin, TX.

    Google Scholar 

  111. Stucki-McCormick S, Drew S, Mizrahi RD (2001) Distraction osteogenesis: overcoming the challenges of a new technique. In: Samchukov MC, Cope J, Cherkashin A, eds. Craniofacial Distraction Osteogenesis. Mosby, St. Louis, pp 595–603.

    Google Scholar 

  112. Szmukler-Moncler S, Salama H, Reingewirtz Y, Dubruille JH (1998) Timing of loading and effect of micromotion on bone-dental implant interface: review of experimental literature. J Biomed Mater Res Appl Biomater 43:192–203.

    CAS  Google Scholar 

  113. Thilander B, Nyman S, Karring T, Magnusson I (1983) Bone regeneration in alveolar bone dehiscences related to orthodontic tooth movements. Eur J Orthod 5:105–114.

    PubMed  CAS  Google Scholar 

  114. Tuan R (2003) Cellular signaling in developmental chondrogenesis: N-cadherin, Wnts, and BMP-2. J Bone Joint Surg Am 85A(Suppl 2):137–141.

    Google Scholar 

  115. Urist M (1997) Bone morphogenetic protein: the molecularization of skeletal system development. J Bone Miner Res 12:343–346.

    PubMed  CAS  Google Scholar 

  116. Urist MR, Mikulski AJ, Nakagawa M, Yen K (1977) A bone matrix calcification-initiator noncollagenous protein. Am J Physiol 232:C115–127.

    PubMed  CAS  Google Scholar 

  117. Voudouris JC, Woodside DG, Altuna G, Angelopoulos G, Bourque PJ, Lacouture CY, Kuftinec MM (2003) Condyle-fossa modifications and muscle interactions during Herbst treatment, Part 2. Results and conclusions. Am J Orthod Dentofacial Orthop 124:13–29.

    PubMed  Google Scholar 

  118. Voudouris JC, Woodside DG, Altuna G, Kuftinec MM, Angelopoulos G, Bourque PJ (2003) Condylefossa modifications and muscle interactions during Herbst treatment, Part 1. New technological methods. Am J Orthod Dentofacial Orthop 123:604–613.

    PubMed  Google Scholar 

  119. Wang FS, Wang CJ, Huang HJ, Chung H, Chen RF, Yang KD (2001) Physical shock wave mediates membrane hyperpolarization and Ras activation for osteogenesis in human bone marrow stromal cells. Biochem Biophys Res Commun 287:648–655.

    PubMed  CAS  Google Scholar 

  120. Wang FS, Wang CJ, Sheen-Chen SM, Kuo YR, Chen RF, Yang KD (2002) Superoxide mediates shock wave induction of ERK-dependent osteogenic transcription factor (Cbfa1) and mesenchymal cell differentiation toward osteoprogenitors. J Biol Chem 277: 10931–10937.

    PubMed  CAS  Google Scholar 

  121. Wolff J, Das Gesetz der Transformation der Knochen (1892) Hirschwald, Berlin.

    Google Scholar 

  122. Wysolmerski JJ, Stewart AF (1998) The physiology of parathyroid hormone-related protein: an emerging role as a developmental factor. Annu Rev Physiol 60: 431–460.

    PubMed  CAS  Google Scholar 

  123. Xiao G, Jiang D, Ge C, Zhao Z, Lai Y, Boules H, Phimphilai M, Yang X, Karsenty G, Franceschi RT (2005) Cooperative interactions between ATF4 and Runx2/Cbfa1 stimulate osteoblast-specific osteocalcin gene expression. J Biol Chem 280:30689–30696.

    PubMed  CAS  Google Scholar 

  124. Yang X, Matsuda K, Bialek P, Jacquot S, Masuoka HC, Schinke T, Li L, Brancorsini S, Sassone-Corsi P, Townes TM, Hanauer A, Karsenty G (2004) ATF4 is a substrate of rsk2 and an essential regulator of osteoblast biology: implication for Coffin-Lowry syndrome. Cell 117:387–398.

    PubMed  CAS  Google Scholar 

  125. Yang Y (2003) Wnts and wing: Wnt signaling in vertebrate limb development and musculoskeletal morphogenesis. Birth Defects Res, Part C, Embryo Today 69:305–317.

    CAS  Google Scholar 

  126. Zhou H, Choong P, McCarthy R, Chou ST, Martin TJ, Ng KW (1994) In situ hybridization to show sequential expression of osteoblast gene markers during bone formation in vivo. J Bone Miner Res 9: 1489–1499.

    PubMed  CAS  Google Scholar 

  127. Zimmerman LB, DeJesus-Escobar JM, Harland RM (1996) The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86:599–606.

    PubMed  CAS  Google Scholar 

  128. Ziros PG, Gil AP, Georgakopoulos T, Habeos I, Kletsas D, Basdra EK, Papavassiliou AG (2002) The bone-specific transcriptional regulator Cbfa1 is a target of mechanical signals in osteoblastic cells. J Biol Chem 277:23934–23941.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

Ko, CC., Somerman, M.J., An, KN. (2007). Motion and Bone Regeneration. In: Bronner, F., Farach-Carson, M.C., Mikos, A.G. (eds) Engineering of Functional Skeletal Tissues. Topics in Bone Biology, vol 3. Springer, London. https://doi.org/10.1007/978-1-84628-366-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-366-6_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-962-3

  • Online ISBN: 978-1-84628-366-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics