Advertisement

Injectable Scaffolds for Bone and Cartilage Regeneration

  • Claudio Migliaresi
  • Antonella Motta
  • Anthony T. DiBenedetto
Chapter
Part of the Topics in Bone Biology book series (TBB, volume 3)

Abstract

Every year hundreds of thousands people worldwide receive hip prostheses, implants for bone repair, and surgical repair of degraded cartilage. “Over 15 million people worldwide suffer from knee-joint failure each year due to the breakdown of surrounding cartilage in the joint and the inability of this cartilage to repair itself through the natural regenerative processes of healing in the body” [27]. Additionally, at least 10 percent of the population suffers from periodontal disease, and one-third of these individuals will require a tooth implant during their lifetime. The standard procedure for repair of orthopedic injuries by tissue grafting is to harvest tissue from the iliac crest or femur of a patient and surgically placing it at the injury site [59].

Keywords

Calcium Phosphate Calcium Phosphate Cement Demineralized Bone Matrix Biphasic Calcium Phosphate Cartilage Regeneration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alpelt D, Theiss F, El-Warrak AO, Zlinszky K, Bettschart-Wolfisberger R, Bohner M, Matter S, Auer JA, von Rechenberg B (2004) In vivo behavior of three different injectable hydraulic calcium phosphate cements. Biomaterials 25:1439–1451.CrossRefGoogle Scholar
  2. 2.
    Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24:401–416.PubMedCrossRefGoogle Scholar
  3. 2A.
    ASTM Standard F2150-02e1, Standard Guide for Characterization and Testing of BIomaterial Scaffolds Used in Tissue Engineered Medical Products (2006) Annual Book of ASTM Standards 2006, Volume 13.01, ASTM International, West Conshohocken PA, USA.Google Scholar
  4. 3.
    Atala A, Cima LG, Kim W, Paige KT, Vacante JP, Retik AB, Vacanti CA (1993) Injectable alginate seeded with chondrocytes as a potential treatment for vesicoureteral reflux. J Urol 150:745–747.PubMedGoogle Scholar
  5. 4.
    Balakrishnan B, Jayakrishnan A (2005) Self-crosslinking biopolymers as injectable in-situ forming biodegradable scaffolds. Biomaterials 26:3941–3951.PubMedCrossRefGoogle Scholar
  6. 5.
    Band PA (1998) Hyaluranon derivatives: chemistry and clinical applications In: Laurent TC, ed. The Chemistry, Biology and Medical Applications of Hyaluranon and its Derivatives. London: Portland Press, pp 33–42.Google Scholar
  7. 6.
    Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R (2004) Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57:19–34.PubMedCrossRefGoogle Scholar
  8. 7.
    Bhattarai N, Ramay HR, Gunn J, Matsen FA, Zhang M (2005) PEG-grafted chitosan as an injectable themosensitive hydrogel for sustained protein release. J Control Release 103:609–624.PubMedCrossRefGoogle Scholar
  9. 8.
    Blokhuis TJ, Termaat MF, den Boer FC, Patka P, Bakker FC, Haarman HJ (2000) Properties of calcium phosphate ceramics in relation to their in-vivo behavior. J Trauma 48:179–186.PubMedCrossRefGoogle Scholar
  10. 9.
    Bohner M, Lemaitre J, Van Landuyt P, Zambelli PY, Merkle HP, Gander B (1997) Gentamicin-loaded hydraulic calcium phosphate bone cement as an antibiotic delivery system. J Pharm Sci 86:565–572.PubMedCrossRefGoogle Scholar
  11. 10.
    Bouhadir KH, Lee KY, Alsberg E, Damm KL, Anderson KW, Mooney DJ (2001) Degradation of partially oxidized alginate and its potential applications for tissue engineering. Biotechnol Prog 17:945–950.PubMedCrossRefGoogle Scholar
  12. 11.
    Bromberg LE, Ron ES (1998) Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. Adv Drug Deliv Rev 31:197–221.PubMedCrossRefGoogle Scholar
  13. 12.
    Brown RQ, Mount A, Burg KJL (2005) Evaluation of polymer scaffolds to be used in a composite injectable system for intervertebral disc tissue engineering. J Biomed Mater Res 74A:32–39.CrossRefGoogle Scholar
  14. 13.
    Brown WE, Chow LC (1983) A new calcium phosphate cement. J Dent Res 62 (Abstract 207):672.Google Scholar
  15. 14.
    Burg KJL, Porter S, Kellam JF (2000) Biomaterial developments for bone tissue engineering. Biomaterials 21:2347–2359.PubMedCrossRefGoogle Scholar
  16. 15.
    Cabana A, Ait-Kadi A, Juhasz J (1997) Study of the gelation process of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) copolymer (poloxamer 407) aqueous solutions. J Colloid Interface Sci 190:307–312.PubMedCrossRefGoogle Scholar
  17. 16.
    Chenite A, Buschmann M, Wang D, Chaput C, Kandani N (2001) Rheological characterization of thermogelling chitosan/glycerol-phosphate solutions. Carbohydrate Polymers 46:39–47.CrossRefGoogle Scholar
  18. 17.
    Chenite A, Chaput C, Wang D, Combes D, Buschmann M, Hoemann CD, Leroux J-C, Atkinson BL, Binette F, Selmani A (2000) Novel injectable neutral solutions form chitosan biodegradable gels in situ. Biomaterials 21:2155–2161.PubMedCrossRefGoogle Scholar
  19. 18.
    Constanz BR, Barr BM, Ison IC, Fulmer MT, Baker J, McKinney L, Goodman SB, Gunasekaren S, Delaney DC, Ross J, Pose RD (1998) Histological, chemical and crystallographic analysis of four calcium phosphate cements in different rabbit osseous sites. J Biomed Mater Res B Appl Biomater 43:451–461.CrossRefGoogle Scholar
  20. 19.
    Constantz BR, Ison IC, Fulme MT, Poser RD, Smith ST, VanWagoner M, Ross J, Goldstein SA (1995) Skeletal repair by in situ formation of the mineral phase of bone. Science 267:1796–1799.PubMedCrossRefGoogle Scholar
  21. 20.
    Daculsi G (1998) Biphasic calcium phosphate concepts applied to artificial bone, implant coating and injectable bone substitutes. Biomaterials 19:1473–1478.PubMedCrossRefGoogle Scholar
  22. 21.
    Daculsi G, Laboux O, Malard O, Weiss P (2003) Current state of the art of biphasic calcium phosphate bioceramics. J Mater Sci Mater Med 14:195–200.PubMedCrossRefGoogle Scholar
  23. 22.
    Daculsi G, Legeros RZ, Nery E, Lynch K, Kerebel B (1989) Transformation of biphasic calcium phosphate ceramics in-vivo. Ultrastructural and physio-chemical characterization. J Biomed Mater Res 23:883–894.PubMedCrossRefGoogle Scholar
  24. 23.
    Daculsi G, Passuti N (1990) Effect of the macroporosity for osseous substitution of calcium phosphate ceramics. Biomaterials 11:86–87.PubMedGoogle Scholar
  25. 24.
    Daculsi G, Passuti N, Martin S, Deudon C, Legeros RZ, Raher S (1990) Macroporous calcium phosphate ceramic for long bone surgery in humans and dogs. J Biomed Mater Res 24:379–396.PubMedCrossRefGoogle Scholar
  26. 25.
    DiBenedetto AT, Huang SJ, Migliaresi C, Motta A (2003) Injectable bioactive gels and gel composites and method of use thereof. US Patent Application 39341.Google Scholar
  27. 26.
    Driskell TD, O’Hara MJ, Sheets HDJ, Greene GW Jr., Natiella JR, Armitage J (1972) Development of ceramic and ceramic composite devices for maxillofacial applications. J Biomater Res 6:345–361.CrossRefGoogle Scholar
  28. 27.
    Elisseeff J (2005) Repairing knee joints by growing new cartilage using an injectable hydrogel http://www.birchbob.com/MarketingPieces/jhu/printversion2Elisseeff.PDFGoogle Scholar
  29. 28.
    Fini M, Motta A, Torricelli P, Giavaresi G, Nicoli Aldini N, Tschon M, Giardino R, Migliaresi C (2005) The healing of confined critical cancellous defects in the presence of silk fibroin hydrogel. Biomaterials 26:3527–3536.PubMedCrossRefGoogle Scholar
  30. 29.
    Fujita M, Ishihara M, Simizu M, Obara K, Ishizuka T, Saito Y, Yura H, Morimoto Y, Takase B, Matsui T, Kikuchi M, Maehara T (2004) Vascularization in vivo caused by the controlled release of fibroblast growth factor-2 from an injectable chitosan/nonanticoagulant heparin hydrogel. Biomaterials 25: 699–706.PubMedCrossRefGoogle Scholar
  31. 30.
    Gauthier O, Khairoun I, Bosco J, Obedia L, Bourges X, Rau C, Magne D, Bouler JM, Aguado E, Daculsi G, Weiss P (2003) Noninvasive bone replacement with new injectable calcium phosphate biomaterial. J Biomed Mater Res 66A:47–54.CrossRefGoogle Scholar
  32. 31.
    Gauthier G, Muller R, von Stechow D, Lamy B, Weiss P, Bouler J-M, Aguado E, Daculsi G (2005) In-vivo bone regeneration with injectable calcium phosphate biomaterial: a three-dimensional micro-computed tomographic, biomechanical and SEM study. Biomaterials 26:5444–5453.PubMedCrossRefGoogle Scholar
  33. 32.
    Gomes ME, Reis RL (2004) Biodegradable polymers and composites in biomedical applications: from catgut to tissue engineering. Part 2: Systems for temporary replacement and advanced tissue regeneration. Int Mater Rev 49:274–285.CrossRefGoogle Scholar
  34. 33.
    Goodman SB, Bauer TW, Carter D, Casteleyn PP, Goldstein SA, Kyle RF, Larsson S, Stakewich CJ, Swiontkowski MF, Tencer AF, Yetkinler DN, Poser RD (1998) Norial SRS cement augmentation in hip fracture treatment. Clin Orthop Rel Res 348:42–50.Google Scholar
  35. 34.
    Graham NB (1998) Hydrogels: their future, Part 1. Med Device Technol 9:18–22.PubMedGoogle Scholar
  36. 35.
    Graham NB (1998) Hydrogels: their future, Part 2. Med Device Technol 9:22–25.PubMedGoogle Scholar
  37. 36.
    Grimandi G, Weiss P, Millot F, Daculsi G (1998) In vitro evaluation of a new injectable calcium phosphate material. J Biomed Mater Res 39:660–666.PubMedCrossRefGoogle Scholar
  38. 37.
    Gutowska A, Jeong B, Jasionowski M (2001) Injectable gels for tissue engineering. Anat Rec 263: 342–349.PubMedCrossRefGoogle Scholar
  39. 38.
    Gutowska A, Song L, Armstrong BL, Campbell AA (1998) Injectable stimuli-sensitive polymer ceramic composites for bone tissue regeneration. Trans Soc Biomater 21:450.Google Scholar
  40. 39.
    Hench LH (1998) Bioceramic. J Am Ceram Soc 81:1705–1728.CrossRefGoogle Scholar
  41. 40.
    Heymann D, Guicheux J, Rouselle AV (2001) Ultrastructural evidence in-vitro of osteoclastic-induced degradation of calcium phosphate ceramic by simultaneous resorption and phagocytosis mechanisms. Histol Histopathol 16:37–44.PubMedGoogle Scholar
  42. 41.
    Holland TA, Tessmar JKV, Tabata Y, Mikos AG (2003) Transforming growth factor-β1 release from oligo(poly(ethylene glycol) fumarate hydrogels in conditions that model the cartilage wound healing environment. J Control Release 94:101–114.CrossRefGoogle Scholar
  43. 42.
    Hutmacher DW, Sittinger M (2003) Periosteal cells in bone tissue engineering. Tissue Eng 9:45–64.CrossRefGoogle Scholar
  44. 43.
    Ikenaga M, Hardouin P, Lemaitre J, Andrianjatovo H, Flautre B (1998) Biomedical characterization of a biodegradable calcium phosphate hydraulic cement: a comparison with porous biphasic calcium phosphate ceramics. J Biomed Mater Res A Appl Biomater 40:139–144.CrossRefGoogle Scholar
  45. 44.
    Ishihara M, Obara K, Ishizuka T, Fujita M, Sato M, Masuoka K, Saito Y, Yura H, Matsui T, Hattori H, Kikuchi M, Kurita A (2003) Controlled release of fibroblast growth factors and heparin from photo-crosslinked chitosan hydrogels and subsequent effect on in vivo vascularization. J Biomed Mater Res 64:551–559.CrossRefGoogle Scholar
  46. 45.
    Jaisionowski M, Krzyminski K, Chrisler W, Markille LM, Morris J, Gutowska A (2004) Thermally-reversible gel for 3-D cell culture of chondrocytes. J Mater Sci Mater Med 15:575–582.CrossRefGoogle Scholar
  47. 46.
    Jeong B, Bae YH, Kim SW (1999) Biodegradable thermosensitive micelles of PEG-PLGA-PEG triblock copolymers. Colloids and Surfaces, B: Biointerfaces 16:185–193.CrossRefGoogle Scholar
  48. 47.
    Jeong B, Bae YH, Kim SW (1999) Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions. Macromolecules 32:7064–7069.CrossRefGoogle Scholar
  49. 48.
    Jeong B, Bae YH, Kim SW (2000). In situ gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions and degradation thereof. J Biomed Mater Res 50:171–177.PubMedCrossRefGoogle Scholar
  50. 49.
    Jeong B, Bae YH, Lee DS, Kim SW (1997) Biodegradable block copolymers as injectable drug-delivery systems. Nature 388:860–862.PubMedCrossRefGoogle Scholar
  51. 50.
    Jeong B, Kibbey MR, Birnbaum JC, Won Y-Y, Gutowska A (2000) Thermogelling biodegradable polymers with hydrophilic backbones: PEG-PLGA. Macromolecules 33:8317–8322.CrossRefGoogle Scholar
  52. 51.
    Jeong JH, Lim DW, Han DK, Park TG (2000) Synthesis, characterization and protein adsorption behaviors of PLGA/PEG di-block co-polymer blend films. Colloids and Surfaces, B: Biointerfaces 18:371–379.CrossRefGoogle Scholar
  53. 52.
    Jin H-J, Kaplin DL (2003) Mechanisms of silk processing in insects and spiders. Nature 424:1057–1061.PubMedCrossRefGoogle Scholar
  54. 53.
    Kemal K, Motta A, Fambri L, Migliaresi C (2001) Poly(ε-Caprolactone-co-D, L-lactide)/silk fibroin particles composite materials: preparation and characterization. J Biomater Sci Polym Ed 12:337–351.CrossRefGoogle Scholar
  55. 54.
    Kisiday J, Jin M, Kurz B, Hung H, Semino C, Zhang S, Grodzinsky AJ (2002) Self assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci USA 99:9996–10001.PubMedCrossRefGoogle Scholar
  56. 55.
    Knaack D, Goad ME, Aiolova M, Rey C, Tofighi A, Chakravarthy P, Lee DD (1998) A resorbable calcium phosphate bone substitute. J Biomed Mater Res B Appl Biomater 43:399–409.CrossRefGoogle Scholar
  57. 56.
    Komath M, Varma HK (2003) Development of a fully injectable calcium phosphate cement for orthopedic and dental applications. Bull Mater Sci 26:415–422.Google Scholar
  58. 57.
    Kuo CK, Ma PX (2001) Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials 22:511–521.PubMedCrossRefGoogle Scholar
  59. 58.
    Larsson S, Bauer TW (2002). Use of injectable calcium phosphate cement for fracture fixation: a review. Clin Orthop Relat Res 395:23–32.PubMedCrossRefGoogle Scholar
  60. 59.
    Laurencin CT, Khan Y (2005) Bone graft substitute materials. www.emedicine.comGoogle Scholar
  61. 60.
    Leach JB, Bivens KA, Patrick Jr CW, Schmidt CE (2003) Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds. Biotechnol Bioeng 82:578–589.CrossRefGoogle Scholar
  62. 61.
    Lee DS, Shim MS, Kim SW, Lee H, Park I, Chang T (2001) Novel thermoreversible gelation of biodegradable PLGA-block-PEO-block-PLGA triblock copolymers in aqueous solution. Macromol Rapid Commun 22:587–592.CrossRefGoogle Scholar
  63. 62.
    Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1879.PubMedCrossRefGoogle Scholar
  64. 63.
    LeGeros RZ (1988) Calcium phosphate materials in restorative dentistry: a review. Adv Dent Res 2:164–183.PubMedGoogle Scholar
  65. 64.
    Luginbuehl V, Wenk E, Koch A, Gander B, Merkle HP, Meindel L (2005) Insulin-like growth factor Ireleasing alginate-tricalcium phosphate composites for bone regeneration. Pharm Res 22:940–950.PubMedCrossRefGoogle Scholar
  66. 65.
    Luo Y, Kirker KR, Prestwich GD (2000) Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery. J Control Release 69:169–184.PubMedCrossRefGoogle Scholar
  67. 66.
    Ma PX (2004) Scaffolds for tissue fabrication. Materials Today, May, pp 30–40.Google Scholar
  68. 67.
    Mahr M, Bartle GB, Bite U, Clay R, Kasperbauer JL, Holmes JM (2000) Norian craniofacial repair system bone cement for the repair of craniofacial skeletal defects. Ophthal Plast Reconstr Surg 16:393–398.PubMedCrossRefGoogle Scholar
  69. 68.
    Mallapragada KS, Narasimhan B, eds (2002) Injectable polymeric biomaterials. Special issue. Biomaterials 23:4305–4333.Google Scholar
  70. 69.
    Mano JF, Sousa RA, Boesel LF, Neves NM, Reis RL (2004) Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments. Composites Sci and Technol 64:789–817.CrossRefGoogle Scholar
  71. 70.
    Minoura N, Aiba S-I, Gotoh Y, Tsukada M, Imai Y (1995) Attachment and growth of cultured fibroblast cells on silk protein matrices. J Biomed Mater Res 29:1215–1221.PubMedCrossRefGoogle Scholar
  72. 71.
    Mortensen K, Pedersen JS (1993) Structural study on the micelle formation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer in aqueous solution. Macromolecules 26:805–812.CrossRefGoogle Scholar
  73. 72.
    Motta A, Fambri L, Migliaresi C (2002) Regenerated silk fibroin films: thermal and dynamic mechanical analysis. Macromol Chem Physics 203:1658–1665.CrossRefGoogle Scholar
  74. 73.
    Motta A, Migliaresi C, Faccioni F, Torricelli P, Fini M, Giardino R (2004) Fibroin hydrogels for biomedical applications: preparation, characterization and in vitro cell culture studies. J Biomater Sci Polym Ed 15:851–864.PubMedCrossRefGoogle Scholar
  75. 74.
    Motta A, Migliaresi C, Lloyd AW, Denyer SP, Santin M (2002) Serum protein adsorption on silk fibroin fibres and membranes: surface opsonization and binding strength. J Bioact Compact Polym 17:23–35.CrossRefGoogle Scholar
  76. 75.
    Muzarelli R (1973) Chitosan. In: Muzarelli R, ed. Natural Chelating Polymers. Oxford: Pergamon Press, pp 144–176.Google Scholar
  77. 76.
    Nakayama OS, Matsuda T (2001) Thermoresponsive artificial extracellular matrix for tissue engineering: hyaluronic acid biconjugated with poly(Nisoproylacrylamide) grafts. Biomacromolecules 2: 856–863.PubMedCrossRefGoogle Scholar
  78. 77.
    Nguyen H, Qian JJ, Bhatnagar RS, Li S (2003) Enhanced cell attachment and osteoblastic activity by P-15 peptide coated matrix in hydrogels. Biochem Biophys Res Commun 311:179–186.PubMedCrossRefGoogle Scholar
  79. 78.
    Nguyen KT, West JL (2002) Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23:4307–4314.PubMedCrossRefGoogle Scholar
  80. 79.
    Osborne JF, Newesely H (1980) The materials science of calcium phosphate ceramics. Biomaterials 1:108–111.CrossRefGoogle Scholar
  81. 80.
    Otsuka M, Nakahigashi Y, Matsuda Y, Fox JL, Higuchi WI (1994) A novel skeletal drug delivery system using self-setting calcium phosphate cement 7. Effect of biological factors on indomethacin release from the cement loaded on bovine bone. J Pharm Sci 83:1569–1573.PubMedCrossRefGoogle Scholar
  82. 81.
    Park H, Temenoff JS, Holland TA, Tabata Y, Mikos AG (2005) Delivery of TGF-β1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications. Biomaterials 26:7095–7103.PubMedCrossRefGoogle Scholar
  83. 82.
    Payne RG, McGonigle S, Yaszemski MJ, Yasko AW, Mikos AG (2002) Development of an injectable in situ crosslinkable, degradable polymer carrier for osteogenic cell populations. Part 3. Proliferation and differentiation of encapsulated marrow stromal osteoblasts cultured on crosslinking poly(propylene fumarate). Biomaterials 23:4381–4387.PubMedCrossRefGoogle Scholar
  84. 83.
    Quellec P, Gref R, Perrin L, Dellacherie E, Sommer F, Verbavatz JM, Alonso MJ (1998) Protein encapsulation within polyethylene glycol-coated nanospheres. I. Physiochemical characterization J Biomed Mater Res 42:45–54.PubMedCrossRefGoogle Scholar
  85. 84.
    Ratier A, Freche M, Lacout JL, Rodriguez F (2004) Behavior of an injectable calcium phosphate cement with added tetracycline. Int J Pharm 274:261–268.PubMedCrossRefGoogle Scholar
  86. 85.
    Ratner BD, Bryant SJ (2004) Biomaterials: where we have been and where we are going. Annu Rev Biomed Eng 6:41–75.PubMedCrossRefGoogle Scholar
  87. 86.
    Santin M, Denyer SP, Lloyd AW, Motta A (2002) Domain-driven binding of fibrin(ogen) onto silk fibroin biomaterials. J Bioact Compat Polym 17:195–208.CrossRefGoogle Scholar
  88. 87.
    Santin M, Motta A, Freddi G, Cannas M (1999) In vitro evaluation of the inflammatory potential of the silk fibroin. J Biomed Mater Res 46:382–389.PubMedCrossRefGoogle Scholar
  89. 88.
    Schnettler R, Stahl JP, Alt V, Pavlidis T, Dingeldein E, Wenisch S (2004) Calcium phosphate-based bone substitutes. Eur J Trauma 30:219–229.CrossRefGoogle Scholar
  90. 89.
    Seong J-Y, Jun YJ, Jeong B, Sohn YS (2005) New thermogelling poly(organophosphazines) with methoxypoly(ethylene glycol) and oligopeptide as side groups. Polymer 46:5075–5081.CrossRefGoogle Scholar
  91. 90.
    Shin H, Quinten Ruhé P, Mikos AG, Jansen JA (2003) In-vivo bone and soft tissue response to injectable biodegradable oligo(poly(ethylene glycol) fumarate) hydrogels. Biomaterials 24:3201–3211.PubMedCrossRefGoogle Scholar
  92. 91.
    Shu XZ, Liu Y, Palumbo FS, Luo Y, Prestwich GD (2004) In situ crosslinkable hyaluranon hydrogels for tissue engineering. Biomaterials 25:1339–1348.CrossRefGoogle Scholar
  93. 92.
    Silberberg A (1989) Gelled aqueous systems In: Glass JE, ed. Polymers in Aqueous Media. Advances in Chemistry Series 223. Washington, DC: American Chemical Society, pp 1–13.Google Scholar
  94. 93.
    Song JS, Such CH, Park YB, Lee SH, Yoo NC, Lee JD, Kim KH, Lee SK (2001) A phase I/IIa study on intraarticular injection of holmium-166 chitosan complex for the treatment of knee synitis of rheumatoid arthritis. Eur J Nucl Med 28:489–497.PubMedCrossRefGoogle Scholar
  95. 94.
    Sosnik A, Cohn D (2004) Ethoxysilane-capped PEOPPO-PEO triblocks: a new family of reverse thermoreponsive polymers. Biomaterials 25:2851–2858.PubMedCrossRefGoogle Scholar
  96. 95.
    Takagi S, Chow LC, Ishikawa K (1998) Formation of hydroxyapatite in new calcium phosphate cements. Biomaterials 19:1593–1599.PubMedCrossRefGoogle Scholar
  97. 96.
    Temenoff JS, Mikos AG (2000) Injectable biodegradable materials for orthopedic tissue engineering. Biomaterials 21:2405–2412.PubMedCrossRefGoogle Scholar
  98. 97.
    Temenoff JS, Shin H, Conway DE, Engel PS, Mikos AG (2003) In vitro cytotoxicity of redox radical initiators for cross-linking of oligo(poly(ethylene glycol) fumarate) macromonomers. Biomacromolecules 4:1605–1613.PubMedCrossRefGoogle Scholar
  99. 98.
    Unger RE, Wolf M, Peters K, Motta A, Migliaresi C, Kirkpatrick J (2004) Growth of human cells on a novel non-woven silk fibroin net: a potential use for tissue engineering. Biomaterials 25:1069–1075.PubMedCrossRefGoogle Scholar
  100. 99.
    Unger RE, Peters K, Wolf M, Motta A, Migliaresi C, Kirkpatrick CJ (2004) Endothelialization of a nonwoven silk fibroin net for use in tissue engineering: growth and gene regulation of human endothelial cells. Biomaterials 25:5137–5146.PubMedCrossRefGoogle Scholar
  101. 100.
    Williams DF (1991) Concise Encyclopedia of Medical and Dental Materials. Oxford: Pergamon Press.Google Scholar
  102. 101.
    Williams DF (2003) Revisiting the definition of biocompatibility. Med Device Technol 14:10–13.Google Scholar
  103. 102.
    Yamada S, Heymann D, Bouler JM, Daculsi G (1997) Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/beta-tricalcium phosphate ratios. Biomaterials 18:1037–1041.PubMedCrossRefGoogle Scholar
  104. 103.
    Zahraoui C, Sharrock P (1999) Influence of sterilization on injectable bone biomaterials. Bone 25(2 Suppl):1037–1041.Google Scholar

Copyright information

© Springer-Verlag London Limited 2007

Authors and Affiliations

  • Claudio Migliaresi
    • 1
  • Antonella Motta
    • 1
  • Anthony T. DiBenedetto
    • 2
  1. 1.Department of Materials Engineering and Industrial TechnologiesUniversity of TrentoTrentoItaly
  2. 2.University of ConnecticutStorrsUSA

Personalised recommendations