Skip to main content

Engineering Polymeric Scaffolds for Bone Grafts

  • Chapter

Part of the book series: Topics in Bone Biology ((TBB,volume 3))

Abstract

Orthopedic injuries resulting from trauma or improper development often require surgical intervention to restore natural tissue function. Currently, over one million operations are performed annually for the surgical reconstruction of bone [50]. The well-known limitations associated with autografts, allografts, and bone cements have led to the investigation of synthetic polymers as support matrices for bone tissue engineering. Polymers are long-chain molecules that are formed by linking repetitive monomer units. They have been extensively studied for tissue-engineering applications. Constructs designed from these polymers can act as a support matrix to deliver cell populations or induce surrounding tissue ingrowth. The properties of scaffolds directly determine their success in tissue engineering and must be designed specifically for each application.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal CM, Ray RB (2001) Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res 55:141–150.

    Article  PubMed  CAS  Google Scholar 

  2. Allcock HR, Cameron CG (1994) Synthesis and characterization of photo-cross-linkable small-molecule and high-polymeric phosphazenes bearing cinnamate groups. Macromolecules 27:3125–3130.

    Article  CAS  Google Scholar 

  3. Anderson JM (2001) Biological response to materials. Annu Rev Mater Res 31:81–110.

    Article  CAS  Google Scholar 

  4. Andriano KP, Tabata Y, Ikada Y, Heller J (1999) In vitro and in vivo comparison of bulk and surface hydrolysis in absorbable polymer scaffolds for tissue engineering. J Biomed Mater Res 48:602–612.

    Article  PubMed  CAS  Google Scholar 

  5. Angelova N, Hunkeler D (1999) Rationalizing the design of polymeric biomaterials. Trends Biotechnol 17:409–421.

    Article  PubMed  CAS  Google Scholar 

  6. Anseth KS, Svaldi DC, Laurencin CT, Langer R (1997) Photopolymerization of novel degradable networks for orthopedic applications. Photopolymerization 673:189–202.

    CAS  Google Scholar 

  7. Athanasiou KA, Zhu C, Lanctot DR, Agrawal CM, Wang X (2000) Fundamentals of biomechanics in tissue engineering of bone. Tissue Eng 6:361–381.

    Article  PubMed  CAS  Google Scholar 

  8. Barr J, Woodburn KW, Ng SY, Shen HR, Heller J (2002) Post surgical pain management with poly(ortho esters). Adv Drug Deliv Rev 54:1041–1048.

    Article  PubMed  CAS  Google Scholar 

  9. Barralet JE, Wallace LL, Strain AJ (2003) Tissue engineering of human biliary epithelial cells on polyglycolic acid/polycaprolactone scaffolds maintains long-term phenotypic stability. Tissue Eng 9:1037–1045.

    Article  PubMed  CAS  Google Scholar 

  10. Bergsma JE, de Bruijn WC, Rozema FR, Bos RR, Boering G (1995) Late degradation tissue response to poly(L-lactide) bone plates and screws. Biomaterials 16:25–31.

    Article  PubMed  CAS  Google Scholar 

  11. Bourke SL, Kohn J (2003) Polymers derived from the amino acid L-tyrosine: polycarbonates, polyarylates and copolymers with poly(ethylene glycol). Adv Drug Deliv Rev 55:447–466.

    Article  PubMed  CAS  Google Scholar 

  12. Burdick JA, Frankel D, Dernell WS, Anseth KS (2003) An initial investigation of photocurable three-dimensional lactic acid based scaffolds in a criticalsized cranial defect. Biomaterials 24:1613–1620.

    Article  PubMed  CAS  Google Scholar 

  13. Burkoth AK, Anseth KS (2000) A review of photocrosslinked polyanhydrides: in situ forming degradable networks. Biomaterials 21:2395–2404.

    Article  PubMed  CAS  Google Scholar 

  14. Burkoth AK, Burdick J, Anseth KS (2000) Surface and bulk modifications to photocrosslinked polyanhydrides to control degradation behavior. J Biomed Mater Res 51:352–359.

    Article  PubMed  CAS  Google Scholar 

  15. Cai J, Bo S, Cheng R, Jiang L, Yang Y (2004) Analysis of interfacial phenomena of aqueous solutions of polyethylene oxide and polyethylene glycol flowing in hydrophilic and hydrophobic capillary viscometers. J Colloid Interface Sci 276:174–181.

    Article  PubMed  CAS  Google Scholar 

  16. Cao T, Ho KH, Teoh SH (2003) Scaffold design and in vitro study of osteochondral coculture in a three-dimensional porous polycaprolactone scaffold fabricated by fused deposition modeling. Tissue Eng 9Suppl 1:S103–112.

    Article  PubMed  CAS  Google Scholar 

  17. Chen GP, Ushida T, Tateishi T (2001) Development of biodegradable porous scaffolds for tissue engineering. Materials Science and Engineering C-Biomimetic and Supramolecular Systems 17:63–69.

    Google Scholar 

  18. Choueka J, Charvet JL, Koval KJ, Alexander H, James KS, Hooper KA, Kohn J (1996) Canine bone response to tyrosine-derived polycarbonates and poly(L-lactic acid). J Biomed Mater Res 31:35–41.

    Article  PubMed  CAS  Google Scholar 

  19. Ciapetti G, Ambrosio L, Savarino L, Granchi D, Cenni E, Baldini N, Pagani S, Guizzardi S, Causa F, Giunti A (2003) Osteoblast growth and function in porous poly epsilon-caprolactone matrices for bone repair: a preliminary study. Biomaterials 24:3815–3824.

    Article  PubMed  CAS  Google Scholar 

  20. Cooke MN, Fisher JP, Dean D, Rimnac C, Mikos AG (2003) Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth. Journal of Biomedical Materials Research Part B-Applied Biomaterials 64B:65–69.

    Article  CAS  Google Scholar 

  21. Cunliffe D, Pennadam S, Alexander C (2004) Synthetic and biological polymers-merging the interface. Eur Polym J 40:5–25.

    Article  CAS  Google Scholar 

  22. Dai NT, Williamson MR, Khammo N, Adams EF, Coombes AG (2004) Composite cell support membranes based on collagen and polycaprolactone for tissue engineering of skin. Biomaterials 25: 4263–4271.

    Article  PubMed  CAS  Google Scholar 

  23. Dar A, Shachar M, Leor J, Cohen S (2002) Optimization of cardiac cell seeding and distribution in 3D porous alginate scaffolds. Biotechnol Bioeng 80: 305–312.

    Article  PubMed  CAS  Google Scholar 

  24. Davis KA, Anseth KS (2002) Controlled release from crosslinked degradable networks. Crit Rev Ther Drug Carrier Syst 19:385–423.

    Article  PubMed  CAS  Google Scholar 

  25. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351.

    Article  PubMed  CAS  Google Scholar 

  26. El-Amin SF, Lu HH, Khan Y, Burems J, Mitchell J, Tuan RS, Laurencin CT (2003) Extracellular matrix production by human osteoblasts cultured on biodegradable polymers applicable for tissue engineering. Biomaterials 24:1213–1221.

    Article  PubMed  CAS  Google Scholar 

  27. Ertel SI, Kohn J (1994) Evaluation of a series of tyrosine-derived polycarbonates as degradable biomaterials. J Biomed Mater Res 28:919–930.

    Article  PubMed  CAS  Google Scholar 

  28. Fisher JP, Timmer MD, Holland TA, Dean D, Engel PS, Mikos AG (2003) Photoinitiated cross-linking of the biodegradable polyester poly(propylene fumarate). Part I. Determination of network structure. Biomacromolecules 4:1327–1334.

    Article  PubMed  CAS  Google Scholar 

  29. Fisher JP, Vehof JW, Dean D, van der Waerden JP, Holland TA, Mikos AG, Jansen JA (2002) Soft and hard tissue response to photocrosslinked poly(propylene fumarate) scaffolds in a rabbit model. J Biomed Mater Res 59:547–556.

    Article  PubMed  CAS  Google Scholar 

  30. Giordano RA, Wu BM, Borland SW, Cima LG, Sachs EM, Cima MJ (1996) Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing. J Biomater Sci Polym Ed 8:63–75.

    PubMed  CAS  Google Scholar 

  31. Gomes ME, Sikavitsas VI, Behravesh E, Reis RL, Mikos AG (2003) Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds. J Biomed Mater Res A 67:87–95.

    Article  PubMed  Google Scholar 

  32. Gunatillake PA, Adhikari R (2003) Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater 5:1–16; discussion 16.

    PubMed  CAS  Google Scholar 

  33. Gutowska A, Jeong B, Jasionowski M (2001) Injectable gels for tissue engineering. Anat Rec 263: 342–349.

    Article  PubMed  CAS  Google Scholar 

  34. Hayashi T (1994) Biodegradable polymers for biomedical uses. Prog Polym Sci 19:663–702.

    Article  CAS  Google Scholar 

  35. Heller J, Barr J, Ng SY, Abdellauoi KS, Gurny R (2002) Poly(ortho esters): synthesis, characterization, properties and uses. Adv Drug Deliv Rev 54:1015–1039.

    Article  PubMed  CAS  Google Scholar 

  36. Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54:3–12.

    Article  PubMed  CAS  Google Scholar 

  37. Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4:518–524.

    Article  PubMed  CAS  Google Scholar 

  38. Holy CE, Fialkov JA, Davies JE, Shoichet MS (2003) Use of a biomimetic strategy to engineer bone. J Biomed Mater Res A 65:447–453.

    Article  PubMed  CAS  Google Scholar 

  39. Hsu YY, Gresser JD, Trantolo DJ, Lyons CM, Gangadharam PR, Wise DL (1997) Effect of polymer foam morphology and density on kinetics of in vitro controlled release of isoniazid from compressed foam matrices. J Biomed Mater Res 35:107–116.

    Article  PubMed  CAS  Google Scholar 

  40. Hua FJ, Kim GE, Lee JD, Son YK, Lee DS (2002) Macroporous poly(L-lactide) scaffold 1. Preparation of a macroporous scaffold by liquid-liquid phase separation of a PLLA-dioxane-water system. J Biomed Mater Res 63:161–167.

    Article  PubMed  CAS  Google Scholar 

  41. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543.

    Article  PubMed  CAS  Google Scholar 

  42. Hutmacher DW (2001) Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives. J Biomater Sci Polym Ed 12:107–124.

    Article  PubMed  CAS  Google Scholar 

  43. Hutmacher DW, Schantz T, Zein I, Ng KW, Teoh SH, Tan KC (2001) Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res 55:203–216.

    Article  PubMed  CAS  Google Scholar 

  44. Ishaug-Riley SL, Okun LE, Prado G, Applegate MA, Ratcliffe A (1999) Human articular chondrocyte adhesion and proliferation on synthetic biodegradable polymer films. Biomaterials 20:2245–2256.

    Article  PubMed  CAS  Google Scholar 

  45. James K, Levene H, Parsons JR, Kohn J (1999) Small changes in polymer chemistry have a large effect on the bone-implant interface: evaluation of a series of degradable tyrosine-derived polycarbonates in bone defects. Biomaterials 20:2203–2212.

    Article  PubMed  CAS  Google Scholar 

  46. Kaito T, Myoui A, Takaoka K, Saito N, Nishikawa M, Tamai N, Ohgushi H, Yoshikawa H (2005) Potentiation of the activity of bone morphogenetic protein-2 in bone regeneration by a PLA-PEG/hydroxyapatite composite. Biomaterials 26:73–79.

    Article  PubMed  CAS  Google Scholar 

  47. Kim SS, Utsunomiya H, Koski JA, Wu BM, Cima MJ, Sohn J, Mukai K, Griffith LG, Vacanti JP (1998) Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels. Ann Surg 228:8–13.

    Article  PubMed  CAS  Google Scholar 

  48. Kumar N, Langer RS, Domb AJ (2002) Polyanhydrides: an overview. Adv Drug Deliv Rev 54:889–910.

    Article  PubMed  CAS  Google Scholar 

  49. Langer R (2000) Biomaterials in drug delivery and tissue engineering: one laboratory’s experience. Acc Chem Res 33:94–101.

    Article  PubMed  CAS  Google Scholar 

  50. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926.

    Article  PubMed  CAS  Google Scholar 

  51. Laurencin CT, El-Amin SF, Ibim SE, Willoughby DA, Attawia M, Allcock HR, Ambrosio AA (1996) A highly porous 3-dimensional polyphosphazene polymer matrix for skeletal tissue regeneration. J Biomed Mater Res 30:133–138.

    Article  PubMed  CAS  Google Scholar 

  52. Laurencin CT, Norman ME, Elgendy HM, el-Amin SF, Allcock HR, Pucher SR, Ambrosio AA (1993) Use of polyphosphazenes for skeletal tissue regeneration. J Biomed Mater Res 27:963–973.

    Article  PubMed  CAS  Google Scholar 

  53. Lee SH, Kim BS, Kim SH, Kang SW, Kim YH (2004) Thermally produced biodegradable scaffolds for cartilage tissue engineering. Macromol Biosci 4:802–810.

    Article  PubMed  CAS  Google Scholar 

  54. Lee SJ, Choi JS, Park KS, Khang G, Lee YM, Lee HB (2004) Response of MG63 osteoblast-like cells onto polycarbonate membrane surfaces with different micropore sizes. Biomaterials 25:4699–4707.

    Article  PubMed  CAS  Google Scholar 

  55. Lu L, Garcia CA, Mikos AG (1999) In vitro degradation of thin poly(DL-lactic-co-glycolic acid) films. J Biomed Mater Res 46:236–244.

    Article  PubMed  CAS  Google Scholar 

  56. Lu L, Mikos AG (1996) The importance of new processing techniques in tissue engineering. MRS Bull 21:28–32.

    PubMed  CAS  Google Scholar 

  57. Lu Y, Chen SC (2004) Micro and nano-fabrication of biodegradable polymers for drug delivery. Adv Drug Deliv Rev 56:1621–1633.

    Article  PubMed  CAS  Google Scholar 

  58. Lutolf MP, Weber FE, Schmoekel HG, Schense JC, Kohler T, Muller R, Hubbell JA (2003) Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat Biotechnol 21:513–518.

    Article  PubMed  CAS  Google Scholar 

  59. Ma PX, Zhang R (1999) Synthetic nano-scale fibrous extracellular matrix. J Biomed Mater Res 46:60–72.

    Article  PubMed  CAS  Google Scholar 

  60. Mapili G, Lu Y, Chen S, Roy K (2005) Laser-layered microfabrication of spatially patterned functionalized tissue-engineering scaffolds. J Biomed Mater Res B Appl Biomater.

    Google Scholar 

  61. Mathieu LM, Mueller TL, Bourban PE, Pioletti DP, Muller R, Manson JA (2005) Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering. Biomaterials.

    Google Scholar 

  62. Matsushita N, Terai H, Okada T, Nozaki K, Inoue H, Miyamoto S, Takaoka K (2004) A new bone-inducing biodegradable porous beta-tricalcium phosphate. J Biomed Mater Res A 70:450–458.

    Article  PubMed  Google Scholar 

  63. Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21:2335–2346.

    Article  PubMed  CAS  Google Scholar 

  64. Mikos AG, Bao Y, Cima LG, Ingber DE, Vacanti JP, Langer R (1993) Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation. J Biomed Mater Res 27:183–189.

    Article  PubMed  CAS  Google Scholar 

  65. Mikos AG, McIntire LV, Anderson JM, Babensee JE (1998) Host response to tissue engineered devices. Adv Drug Deliv Rev 33:111–139.

    Article  PubMed  Google Scholar 

  66. Mikos AG, Sarakinos G, Leite SM, Vacanti JP, Langer R (1993) Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials 14:323–330.

    Article  PubMed  CAS  Google Scholar 

  67. Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R, Winslow DN, Vacanti JP (1994) Preparation and characterization of poly(L-lactic acid) foams. Polymer 35:1068–1077.

    Article  CAS  Google Scholar 

  68. Muggli DS, Burkoth AK, Keyser SA, Lee HR, Anseth KS (1998) Reaction behavior of biodegradable, photocross-linkable polyanhydrides. Macromolecules 31:4120–4125.

    Article  CAS  Google Scholar 

  69. Nam YS, Park TG (1999) Biodegradable polymeric microcellular foams by modified thermally induced phase separation method. Biomaterials 20: 1783–1790.

    Article  PubMed  CAS  Google Scholar 

  70. Nam YS, Park TG (1999) Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. J Biomed Mater Res 47:8–17.

    Article  PubMed  CAS  Google Scholar 

  71. Nam YS, Yoon JJ, Park TG (2000) A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive. J Biomed Mater Res 53:1–7.

    Article  PubMed  CAS  Google Scholar 

  72. Novikova LN, Novikov LN, Kellerth JO (2003) Biopolymers and biodegradable smart implants for tissue regeneration after spinal cord injury. Curr Opin Neurol 16:711–715.

    Article  PubMed  CAS  Google Scholar 

  73. Oh SH, Kang SG, Kim ES, Cho SH, Lee JH (2003) Fabrication and characterization of hydrophilic poly(lactic-co-glycolic acid)/poly(vinyl alcohol) blend cell scaffolds by melt-molding particulate-leaching method. Biomaterials 24:4011–4021.

    Article  PubMed  CAS  Google Scholar 

  74. Park YJ, Lee JY, Chang YS, Jeong JM, Chung JK, Lee MC, Park KB, Lee SJ (2002) Radioisotope carrying polyethylene oxide-polycaprolactone copolymer micelles for targetable bone imaging. Biomaterials 23:873–879.

    Article  PubMed  CAS  Google Scholar 

  75. Qiu LY, Zhu KJ (2000) Novel biodegradable polyphosphazenes containing glycine ethyl ester and benzyl ester of amino acethydroxamic acid as cosubstituents: syntheses, characterization, and degradation properties. J Appl Polym Sci 77:2987–2995.

    Article  CAS  Google Scholar 

  76. Rohl L, Larsen E, Linde F, Odgaard A, Jorgensen J (1991) Tensile and compressive properties of cancellous bone. J Biomech 24:1143–1149.

    Article  PubMed  CAS  Google Scholar 

  77. Rohner D, Hutmacher DW, Cheng TK, Oberholzer M, Hammer B (2003) In vivo efficacy of bone-marrow-coated polycaprolactone scaffolds for the reconstruction of orbital defects in the pig. J Biomed Mater Res B Appl Biomater 66:574–580.

    Article  PubMed  Google Scholar 

  78. Sachlos E, Czernuszka JT (2003) Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater 5:29–39; discussion 39–40.

    PubMed  CAS  Google Scholar 

  79. Sawhney AS, Pathak CP, Hubbell JA (1993) Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(alpha-hydroxy acid) diacrylate macromers. Macromolecules 26:581–587.

    Article  CAS  Google Scholar 

  80. Schaefer D, Martin I, Shastri P, Padera RF, Langer R, Freed LE, Vunjak-Novakovic G (2000) In vitro generation of osteochondral composites. Biomaterials 21:2599–2606.

    Article  PubMed  CAS  Google Scholar 

  81. Seal BL, Otero TC, Panitch A (2001) Polymeric biomaterials for tissue and organ regeneration. Materials Science and Engineering R-Reports 34: 147–230.

    Article  Google Scholar 

  82. Sheridan MH, Shea LD, Peters MC, Mooney DJ (2000) Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery. J Control Release 64:91–102.

    Article  PubMed  CAS  Google Scholar 

  83. Shin H, Jo S, Mikos AG (2003) Biomimetic materials for tissue engineering. Biomaterials 24:4353–4364.

    Article  PubMed  CAS  Google Scholar 

  84. Shive MS, Anderson JM (1997) Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 28:5–24.

    Article  PubMed  Google Scholar 

  85. Simon JL, Roy TD, Parsons JR, Rekow ED, Thompson VP, Kemnitzer J, Ricci JL (2003) Engineered cellular response to scaffold architecture in a rabbit trephine defect. J Biomed Mater Res A 66:275–282.

    Article  PubMed  Google Scholar 

  86. Sims CD, Butler PE, Casanova R, Lee BT, Randolph MA, Lee WP, Vacanti CA, Yaremchuk MJ (1996) Injectable cartilage using polyethylene oxide polymer substrates. Plast Reconstr Surg 98:843–850.

    Article  PubMed  CAS  Google Scholar 

  87. Taboas JM, Maddox RD, Krebsbach PH, Hollister SJ (2003) Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. Biomaterials 24: 181–194.

    Article  PubMed  CAS  Google Scholar 

  88. Tangpasuthadol V, Pendharkar SM, Kohn J (2000) Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part I: Study of model compounds. Biomaterials 21:2371–2378.

    CAS  Google Scholar 

  89. Thomson RC, Wake MC, Yaszemski MJ, Mikos AG (1995) Biodegradable polymer scaffolds to regenerate organs. Biopolymers II 122:245–274.

    CAS  Google Scholar 

  90. Thomson RC, Yaszemski MJ, Powers JM, Mikos AG (1995) Fabrication of biodegradable polymer scaffolds to engineer trabecular bone. J Biomater Sci Polym Ed 7:23–38.

    PubMed  CAS  Google Scholar 

  91. Uhrich KE, Gupta A, Thomas TT, Laurencin CT, Langer R (1995) Synthesis and characterization of degradable poly(anhydride-co-imides). Macromolecules 28:2184–2193.

    Article  CAS  Google Scholar 

  92. Vehof JW, Fisher JP, Dean D, van der Waerden JP, Spauwen PH, Mikos AG, Jansen JA (2002) Bone formation in transforming growth factor beta-1-coated porous poly(propylene fumarate) scaffolds. J Biomed Mater Res 60:241–251.

    Article  PubMed  CAS  Google Scholar 

  93. Wake MC, Gerecht PD, Lu L, Mikos AG (1998) Effects of biodegradable polymer particles on rat marrow-derived stromal osteoblasts in vitro. Biomaterials 19:1255–1268.

    Article  PubMed  CAS  Google Scholar 

  94. Whang K, Tsai DC, Nam EK, Aitken M, Sprague SM, Patel PK, Healy KE (1998) Ectopic bone formation via rhBMP-2 delivery from porous bioabsorbable polymer scaffolds. J Biomed Mater Res 42:491–499.

    Article  PubMed  CAS  Google Scholar 

  95. Wolfe MS, Dean D, Chen JE, Fisher JP, Han S, Rimnac CM, Mikos AG (2002) In vitro degradation and fracture toughness of multilayered porous poly(propylene fumarate)/beta-tricalcium phosphate scaffolds. J Biomed Mater Res 61:159–164.

    Article  PubMed  CAS  Google Scholar 

  96. Wu BM, Borland SW, Giordano RA, Cima LG, Sachs EM, Cima MJ (1996) Solid free-form fabrication of drug delivery devices. J Control Release 40: 77–87.

    Article  CAS  Google Scholar 

  97. Yang S, Leong KF, Du Z, Chua CK (2001) The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng 7:679–689.

    CAS  Google Scholar 

  98. Yang S, Leong KF, Du Z, Chua CK (2002) The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng 8:1–11.

    Article  PubMed  CAS  Google Scholar 

  99. Yaszemski MJ, Payne RG, Hayes WC, Langer R, Mikos AG (1996) Evolution of bone transplantation: molecular, cellular and tissue strategies to engineer human bone. Biomaterials 17:175–185.

    Article  PubMed  CAS  Google Scholar 

  100. Zein I, Hutmacher DW, Tan KC, Teoh SH (2002) Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23:1169–1185.

    Article  PubMed  CAS  Google Scholar 

  101. Zhang K, Wang Y, Hillmyer MA, Francis LF (2004) Processing and properties of porous poly(L-lactide)/ bioactive glass composites. Biomaterials; 25:2489–2500.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

Betz, M.W., Yoon, D.M., Fisher, J.P. (2007). Engineering Polymeric Scaffolds for Bone Grafts. In: Bronner, F., Farach-Carson, M.C., Mikos, A.G. (eds) Engineering of Functional Skeletal Tissues. Topics in Bone Biology, vol 3. Springer, London. https://doi.org/10.1007/978-1-84628-366-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-366-6_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-962-3

  • Online ISBN: 978-1-84628-366-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics