Titanium Fiber Mesh: A Nondegradable Scaffold Material

  • Juliette van den Dolder
  • John A. Jansen
Part of the Topics in Bone Biology book series (TBB, volume 3)


The grafting of bone in skeletal reconstruction has become a common task of the orthopedic surgeon. The need for reconstruction or replacement is often the result of trauma, congenital malformations, or cancer. Reconstructive surgery is based upon the principle of replacing defective tissue with viable, functioning alternatives. Various materials have been used to treat the defects, including autogenous bone and alloplastic materials. Grafting materials are necessary to bridge defects or to increase the bone volume. At present, autologous bone is the gold standard, but it has important disadvantages, including donor-site morbidity, limited availability, and unpredictable resorption characteristics. These factors have stimulated the search for other materials that can replace autogenous bone.


Bone Formation Bone Ingrowth Scaffold Material Biomed Mater Porous Titanium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bakker AD, Soejima K, Klein-Nulend J, Burger EH (2001) The production of nitric oxide and prostaglandin E(2) by primary bone cells is shear stress dependent. J Biomech 34:671–677.PubMedCrossRefGoogle Scholar
  2. 2.
    Bancroft GN, Sikavitsas VI, van den Dolder J, Sheffield TL, Ambrose CG, Jansen JA, Mikos AG (2002) Fluid flow increases mineralized matrix deposition in three-dimensional perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. PNAS 99:12600–12605.PubMedCrossRefGoogle Scholar
  3. 3.
    Beck LS, Amento EP, Xu Y, Deguzman L, Lee WP, Nguyen T, Gillett NA (1993) TGF-β1 induces bone closure of skull defects: temporal dynamics of bone formation in defects exposed to rhTGF-β1. J Bone Miner Res 8:753–761.PubMedGoogle Scholar
  4. 4.
    Beck LS, Deguzman L, Lee WP, Xu Y, McFatridge LA, Gillett NA, Amento EP (1991) TGF-β1 induces bone closure of skull defects. J Bone Miner Res 6:1257–1265.PubMedCrossRefGoogle Scholar
  5. 5.
    Becker D, Geissler U, Hempel U, Bierbaum S, Scharnweber D, Worch H, Wenzel KW (2002) Proliferation and differentiation of rat calvarial osteoblasts on type I collagen-coated titanium alloy. J Biomed Mater Res 59:516–527.PubMedCrossRefGoogle Scholar
  6. 6.
    Bruder SP, Jaiswal N, Haynesworth SE (1997) Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 64:278–294.PubMedCrossRefGoogle Scholar
  7. 7.
    Chang YS, Oka M, Kobayashi M, Gu HO, Li ZL, Nakamura T, Ikada Y (1996) Significance of interstitial bone ingrowth under load-bearing conditions: a comparison between solid and porous implant materials. Biomaterials 17:1141–1148.PubMedCrossRefGoogle Scholar
  8. 8.
    Cohen R (2002) A porous tantalum trabecular metal: basic science. Am J Orthop 31:216–217.PubMedGoogle Scholar
  9. 9.
    Gao JM, Niklason L, Langer R (1998) Surface hydrolysis of poly(glycolic acid) meshes increases the seeding density of vascular smooth muscle cells. J Biomed Mater Res 42:417–424.PubMedCrossRefGoogle Scholar
  10. 10.
    Goldstein AS, Juarez TM, Helmke CD, Gustin MC, Mikos AG (2001) Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds. Biomaterials 22:1279–1288.PubMedCrossRefGoogle Scholar
  11. 11.
    Hanada K, Dennis JE, Caplan I (1997) Stimulatory effects of basic fibroblast growth factor and bone morphogenetic protein-2 on osteogenic differentiation of rat bone marrow derived mesenchymal stem cells. J Bone Miner Res 12:1606–1614.PubMedCrossRefGoogle Scholar
  12. 12.
    Haynesworth SE, Goshima J, Goldberg VM, Caplan AI (1992) Characterization of cells with osteogenic potential from human marrow. Bone 13:81–88.PubMedCrossRefGoogle Scholar
  13. 13.
    Holy CE, Shoichet MS, Davies JE (2000) Engineering three-dimensional bone tissue in vitro using biodegradable scaffolds: investigating initial cell-seeding density and culture period. J Biomed Mater Res 51:376–382.PubMedCrossRefGoogle Scholar
  14. 14.
    Ishaug SL, Crane GM, Miller MJ, Yasko AW, Yaszemski MJ, Mikos AG (1997) Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. J Biomed Mater Res 36:17–28.PubMedCrossRefGoogle Scholar
  15. 15.
    Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64:295–312.PubMedCrossRefGoogle Scholar
  16. 16.
    Jansen JA, von Recum AF, van der Waerden JPCM, de Groot K (1992) Soft tissue response to different types of sintered metal fibre-web materials. Biomaterials 13(13):959–968.PubMedCrossRefGoogle Scholar
  17. 17.
    Johnson DL, McAllister TN, Frangos JA (1996) Fluid flow stimulates rapid and continuous release of nitric oxide in osteoblasts. Am J Physiol 271:E205–208.PubMedGoogle Scholar
  18. 18.
    Kadiyala S, Young RG, Thiede MA, Bruder SP (1997) Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant 6:125–134.PubMedCrossRefGoogle Scholar
  19. 19.
    Klein-Nulend J, Burger EH, Semeins CM, Reisz LG, Pilbeam CC (1997) Pulsating fluid flow stimulates prostaglandin release and inducible prostaglandin G/H synthase mRNA expression in primary mouse bone cells. J Bone Miner Res 12:45–51.PubMedCrossRefGoogle Scholar
  20. 20.
    Lynch MP, Stein JL, Stein GS, Lian JB (1995) The influence of type I collagen on the development and maintenance of the osteoblast phenotype in primary and passaged rat calvarial osteoblasts: modification of expression of genes supporting cell growth, adhesion, and extracellular matrix mineralization. Exp Cell Res 216:35–45.PubMedCrossRefGoogle Scholar
  21. 21.
    Marti A (2000) Cobalt-base alloys used in bone surgery. Injury 31(suppl 4):S-D18–21.Google Scholar
  22. 22.
    Mendes SC, Van den Brink I, De Bruijn JD, van Blitterswijk CA (1998) In vivo bone formation by human bone marrow cells: effect of osteogenic culture supplements and cell densities. J Mater Sci Mater Med 9:855–858.PubMedCrossRefGoogle Scholar
  23. 23.
    Mizuno M, Kuboki Y (2001) Osteoblast-related gene expression of bone marrow cells during the osteoblastic differentiation induced by type I collagen. J Biochem (Tokyo) 129:133–138.PubMedGoogle Scholar
  24. 24.
    Moursi AM, Damsky CH, Lull J, Zimmerman D, Doty SB, Aota S, Globus RK (1996) Fibronectin regulates calvarial osteoblast differentiation. J Cell Sci 109 (Pt 6):1369–1380.PubMedGoogle Scholar
  25. 25.
    Moursi AM, Globus RK, Damsky CH (1997) Interactions between integrin receptors and fibronectin are required for calvarial osteoblast differentiation in vitro. J Cell Sci 110:2187–2196.PubMedGoogle Scholar
  26. 26.
    Owen TA, Aronow M, Shalhoub V, Barone LM, Wilming L, Tassinari MS, Kennedy MB, Pockwinse S, Lian JB, Stein GS (1990) Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol 143:420–430.PubMedCrossRefGoogle Scholar
  27. 27.
    Paquay YCGJ, de Blieck-Hogervorst JMA, Jansen JA (1996) Corrosion behaviour of metal fibre web structures. J Mater Sci Mater Med 7:585–589.CrossRefGoogle Scholar
  28. 28.
    Pohler OEM (2000) Unalloyed titanium for implants in bone surgery. Injury 31:S-D7–13.CrossRefGoogle Scholar
  29. 29.
    Rancourt D, Shirazi-Adl A, Drouin G, Paiement AG (1990) Friction properties of the interface between porous-surfaced metals and tibial cancellous bone. J Biomed Mater Res 24:1503–1519.PubMedCrossRefGoogle Scholar
  30. 30.
    Saito T, Albelda SM, Brighton CT (1994) Identification of integrin receptors on cultured human bone cells. J Orthop Res 12:384–394.PubMedCrossRefGoogle Scholar
  31. 31.
    Siebers MC, Ter Brugge PJ, Walboomers XF, Jansen JA (2005) Integrins as linker proteins between osteoblasts and bone replacing materials. A critical review. Biomaterials 26:137–146.PubMedCrossRefGoogle Scholar
  32. 32.
    Sikavitsas V, van den Dolder J, Bancroft GN, Jansen JA, Mikos AG (2003) Influence of the in vitro culture period on the in vivo performance of cell/titanium bone tissue engineered constructs using a rat cranial critical size defect. J Biomed Mater Res 67A:944–951.CrossRefGoogle Scholar
  33. 33.
    Sikavitsas VI, Bancroft GN, Holtorf HL, Jansen JA, Mikos AG (2003) Mineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forces. PNAS 100:14683–14688.PubMedCrossRefGoogle Scholar
  34. 34.
    Sikavitsas VI, Bancroft GN, Mikos AG (2002) Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor. J Biomed Mater Res 62:136–148.PubMedCrossRefGoogle Scholar
  35. 35.
    Van den Dolder J, Bancroft GN, Sikavitsas V, Spauwen PH, Mikos AG, Jansen JA (2003) The effect of fibronectin and collagen I coated titanium fiber mesh on proliferation and differentiation of osteogenic cells. Tissue Eng 9:505–516.PubMedCrossRefGoogle Scholar
  36. 36.
    Van den Dolder J, Bancroft GN, Sikavitsas VI, Spauwen PH, Jansen JA, Mikos AG (2003) Flow perfusion culture of marrow stromal osteoblasts in titanium fiber mesh. J Biomed Mater Res 64:235–241.CrossRefGoogle Scholar
  37. 37.
    Van den Dolder J, Farber E, Spauwen PHM, Jansen JA (2003) Bone tissue regeneration using titanium fiber mesh combined with rat bone marrow cells for the treatment of bone defects. Biomaterials 24:1745–1750.PubMedCrossRefGoogle Scholar
  38. 38.
    Van den Dolder J, Spauwen PHM, Jansen JA (2003) Evaluation of various seeding techniques for culturing osteogenic cells on titanium fiber mesh. Tissue Eng 9:315–326.PubMedCrossRefGoogle Scholar
  39. 39.
    Van den Dolder J, Vehof JWM, Spauwen PHM, Jansen JA (2002) Bone formation by rat bone marrow cells cultured on titanium fiber mesh: effect of in vitro culture time. J Biomed Mater Res 62:350–358.PubMedCrossRefGoogle Scholar
  40. 40.
    Vehof JWM, Fisher JP, Dean D, van der Waerden JP, Spauwen PH, Mikos AG, Jansen JA (2002) Bone formation in transforming growth factor β1-loaded titanium fiber mesh implants. Clin Oral Implants Res 13:94–102.PubMedCrossRefGoogle Scholar
  41. 41.
    Vehof JWM, Spauwen PHM, Jansen JA (2000) Bone formation in calcium-phosphate-coated titanium mesh. Biomaterials 21:2003–2009.PubMedCrossRefGoogle Scholar
  42. 42.
    Vehof JW, de Ruijter AE, Spauwen PH, Jansen JA (2001) Influence of rhBMP-2 on rat bone marrow stromal cells cultured on titanium fiber mesh. Tissue Eng 7:373–383.PubMedCrossRefGoogle Scholar
  43. 43.
    Vehof JWM, Mahwood J, Takita H, van’t Hof MA, Kuboki Y, Spauwen PH, Jansen JA (2001) Ectopic bone formation in bone morphogenetic protein loaded calcium phosphate coated titanium fiber mesh. Plast Reconstr Surg 108:434–443.PubMedCrossRefGoogle Scholar
  44. 44.
    Vehof JWM, Takita H, Kuboki Y, Spauwen PH, Jansen JA (2002) Histological characterization of the early stages of bone morphogenetic protein-induced osteogenesis. J Biomed Mater Res 61:440–446.PubMedCrossRefGoogle Scholar
  45. 45.
    Vehof JWM, van den Dolder J, de Ruijter JE, Spauwen PH, Jansen JA (2003) Bone formation in Ca-P coated and non-coated titanium fiber mesh. J Biomed Mater Res 64:417–426.CrossRefGoogle Scholar
  46. 46.
    Xiao YL, Riesle J, van Blitterswijk CA (1999) Static and dynamic fibroblast seeding and cultivation in porous PEO/PBT scaffolds. J Mater Sci Mater Med 10:773–777.PubMedCrossRefGoogle Scholar
  47. 47.
    Yang S, Leong KF, Du Z, Chua CK (2001) The design of scaffolds for use in tissue engineering. Part 1. Traditional factors. Tissue Eng 7:679–690.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2007

Authors and Affiliations

  • Juliette van den Dolder
    • 1
  • John A. Jansen
    • 1
  1. 1.Department of Periodontology and BiomaterialsRadboud University Nijmegen Medical CenterNijmegenThe Netherlands

Personalised recommendations