Skip to main content

Part of the book series: Topics in Bone Biology ((TBB,volume 3))

Abstract

Over the past 30 years, there have been significant advances in the development of biodegradable materials [79]. In particular, these materials have received attention for use as implants to aid regeneration of orthopedic defects [49, 91]. Every year more than 3.1 million orthopedic surgeries are performed in the United States alone [1]. However, although current treatments using nondegradable fixation materials have proven efficacious, tissue-engineering approaches with biodegradable implants are being considered as promising future alternatives [8, 49]. One possible advantage of these systems is that biodegradable implants can be engineered to provide temporary support for bone fractures, and because they can degrade at a rate matching new tissue formation, their use can eliminate the need for a second surgery [49].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Academy of Orthopaedic Surgeons website, www.aaos.org.

    Google Scholar 

  2. Ahsan T, Sah RL (1999) Biomechanics of integrative cartilage repair. Osteoarthritis Cartilage 7:29–40.

    PubMed  CAS  Google Scholar 

  3. Ali SA, Zhong SP, Doherty PJ, Williams, DF (1993) Mechanisms of polymer degradation in implantable devices. I. Poly(caprolactone). Biomaterials 14:648–656.

    PubMed  CAS  Google Scholar 

  4. Ambrose CG, Clyburn TA, Louden K, Joseph J, Wright J, Gulati P, et al. (2004) Effective treatment of osteomyelitis with biodegradable microspheres in a rabbit model. Clin Orthop 421:293–299.

    PubMed  Google Scholar 

  5. Amiel D, Frank C, Harwood F, Fronek J, Akeson W (1984) Tendons and ligaments: a morphological and biochemical comparison. J Orthop Res 1:257–265.

    PubMed  CAS  Google Scholar 

  6. Andriano KP, Tabata Y, Ikada Y, Heller J (1999) In vitro and in vivo comparison of bulk and surface hydrolysis in absorbable polymer scaffolds for tissue engineering. J Biomed Mater Res 48:602–612.

    PubMed  CAS  Google Scholar 

  7. Athanasiou K, Zhu C, Lanctot D, Agrawal C, Wang X (2000) Fundamentals of biomechanics in tissue engineering of bone. Tissue Eng 6:361–381.

    PubMed  CAS  Google Scholar 

  8. Athanasiou KA, Agrawal CM, Barber FA, Burkhart SS (1998) Orthopaedic applications for PLA-PGA biodegradable polymers. Arthroscopy 14:726–737.

    PubMed  CAS  Google Scholar 

  9. Awad HA, Erickson GR, Guilak F (2002) Biomaterials for cartilage tissue engineering. In: Lewandrowski K, Wise D, Trantolo D, Gresser J, Yaszemski M, Altobelli D, eds. Tissue Engineering and Biodegradable Equivalents: Scientific and Clinical Applications. Marcel Dekker, New York.

    Google Scholar 

  10. Barbensee JE, McIntire LV, Mikos AG (2000) Growth factor delivery for tissue engineering. Pharm Res 17:497–504.

    Google Scholar 

  11. Bostman O, Pihlajamaki H (2000) Clinical biocompatibility of biodegradable orthopaedic implants for internal fixation: a review. Biomaterials 21:2615–2621.

    PubMed  CAS  Google Scholar 

  12. Bryant SJ, Anseth KS (2002) Hydrogel properties influence ECM production by chondrocytes photo-encapsulated in poly(ethylene glycol) hydrogels. J Biomed Mater Res 59:63–72.

    PubMed  CAS  Google Scholar 

  13. Butler DL, Goldstein SA, Guilak F (2000) Functional tissue engineering: the role of biomechanics. J Biomech Eng 122:570–575.

    PubMed  CAS  Google Scholar 

  14. Caborn DN, Urban WPJ, Johnson DL, Nyland J, Pienkowski D (1997) Biomechanical comparison between BioScrew and titanium alloy interference screws for bone-patellar tendon-bone graft fixation in anterior cruciate ligament reconstruction. Arthroscopy 13: 229–232.

    PubMed  CAS  Google Scholar 

  15. Chen VJ, Ma PX (2004) Nano-fibrous poly(-lactic acid) scaffolds with interconnected spherical macropores. Biomaterials 25:2065–2073.

    PubMed  CAS  Google Scholar 

  16. Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD, et al (2000) Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 21:2155–2161.

    PubMed  CAS  Google Scholar 

  17. Claes LE, Ignatius AA, Rehm KE, Scholz C (1996) New bioresorbable pin for the reduction of small bony fragments: design, mechanical properties and in vitro degradation. Biomaterials 17:1621–1626.

    PubMed  CAS  Google Scholar 

  18. Daamen WF, Nillesen STM, Hafmans T, Veerkamp JH, van Luyn MJA, van Kuppevelt TH (2005) Tissue response of defined collagen-elastin scaffolds in young and adult rats with special attention to calcification. Biomaterials 26:81–92.

    PubMed  CAS  Google Scholar 

  19. Daniels AU, Chang MK, Andriano KP (1990) Mechanical properties of biodegradable polymers and composites proposed for internal fixation of bone. J Appl Biomater 1:57–78.

    PubMed  CAS  Google Scholar 

  20. Disegi JA, Wyss H (1989) Implant materials for fracture fixation: a clinical perspective. Orthopedics 12:75–79.

    PubMed  CAS  Google Scholar 

  21. Donahue HJ, Chen Q, Jacobs CR, Saunders MM, Yellowley CE (2001) Bone cells and mechanotransduction. In: Rosier R, Evans C, eds. Molecular Biology in Orthopaedics. American Academy of Orthopaedic Surgeons, Scottsdate, pp 179–190.

    Google Scholar 

  22. Drury JL, Dennis RG, Mooney DJ (2004) The tensile properties of alginate hydrogels. Biomaterials 25: 3187–3199.

    PubMed  CAS  Google Scholar 

  23. Elisseeff J, McIntosh W, Anseth KS, Riley S, Ragan P, Langer R (2000) Photoencapsulation of chondrocytes in poly(ethylene oxide)-based semi-interpenetrating networks. J Biomed Mater Res 51:164–171.

    PubMed  CAS  Google Scholar 

  24. Elisseeff J, McIntosh W, Fu K, Blunk BT, Langer R (2001) Controlled-release of IGF-I and TGF-beta1 in a photopolymerizing hydrogel for cartilage tissue engineering. J Orthop Res 19:1098–1104.

    PubMed  CAS  Google Scholar 

  25. Fisher JP, Holland TA, Dean D, Engel PS, Mikos AG (2001) Synthesis and properties of photocross-linked poly(propylene fumarate) scaffolds. J Biomater Sci Polym Ed 12:673–687.

    PubMed  CAS  Google Scholar 

  26. Fisher JP, Jo S, Mikos AG, Reddi AH (2004) Ther moreversible hydrogel scaffolds for articular cartilage engineering. J Biomed Mater Res 71A:268–274.

    CAS  Google Scholar 

  27. Fisher JP, Vehof JW, Dean D, van der Waerden JP, Holland TA, Mikos AG, et al. (2002) Soft and hard tissue response to photocrosslinked poly(propylene fumarate) scaffolds in a rabbit model. J Biomed Mater Res 59:547–556.

    PubMed  CAS  Google Scholar 

  28. Fleming JE, Muschler GF, Boehm C, Lieberman IH, McLain RF (2004) Intraoperative harvest and concentration of human bone marrow osteoprogenitors for enhancement of spinal fusion. In: Goldberg V, Caplan A, eds. Orthopedic Tissue Engineering: Basic Science and Practice. Marcel Decker, New York, pp 51–65.

    Google Scholar 

  29. Goodstone NJ, Cartwright A, Ashton B (2004) Effects of high molecular weight hyaluronan on chondrocytes cultured within a resorbable gelatin sponge. Tissue Eng 10:621–631.

    PubMed  CAS  Google Scholar 

  30. Gordon TD, Schloesser L, Humphries DE, Spector M (2004) Effects of the degradation rate of collagen matrices on articular chondrocyte proliferation and biosynthesis in vitro. Tissue Eng 10:1287–1295.

    PubMed  CAS  Google Scholar 

  31. Goulet F, Germain L, Rancourt D, Caron C, Normand A, Auger FA (1997) Tendons and ligaments. In: Lanza R, Langer R, eds. Principles of Tissue Engineering. Academic Press, San Diego, pp 633–644.

    Google Scholar 

  32. Gunatillake PA, Adhikari R (2003) Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater 5:1–16.

    PubMed  CAS  Google Scholar 

  33. Halstenberg S, Panitch A, Rizzi S, Hall H, Hubbell JA (2002) Biologically engineered protein-graftpoly( ethylene glycol) hydrogels: a cell adhesive and plasmin-degradable biosynthetic material for tissue repair. Biomacromolecules 3:710–723.

    PubMed  CAS  Google Scholar 

  34. Hanson SR, Harker LA (1994) Blood coagulation and blood-material interactions. In: Ratner B, Hoffman A, Schoen F, Lemons J, eds. Biomaterials Science: An Introduction to Materials in Medicine. Hanser, New York.

    Google Scholar 

  35. Heath CA (2000) Cells for tissue engineering. Trends Biotechnol 18:17–19.

    PubMed  CAS  Google Scholar 

  36. Heinegard D, King K, Morgelin M, Rosenberg K, Wiberg C (2001) Matrix molecules with roles in cartilage assembly. In: Rosier R, Evans C, eds. Molecular Biology in Orthopaedics. American Academy of Orthopaedic Surgeons, Scottsdale, pp 315–323.

    Google Scholar 

  37. Higashi S, Yamamuro T, Nakamura T, Ikada Y, Hyon SH, Jamshidi K (1986) Polymer-hydroxyapatite composites for biodegradable bone fillers. Biomaterials 7:183–187.

    PubMed  CAS  Google Scholar 

  38. Holland TA, Bodde EW, Baggett LS, Tabata Y, Mikos AG, Jansen JA (2005) Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds. J Biomed Mater Res A 75:156–167.

    PubMed  Google Scholar 

  39. Holland TA, Mikos AG (2003) Advances in drug delivery for articular cartilage. J Control Release 86:1–14.

    PubMed  CAS  Google Scholar 

  40. Holland TA, Tabata Y, Mikos AG (2003) In vitro release of transforming growth factor-beta 1 from gelatin microparticles encapsulated in biodegradable, injectable oligo(poly(ethylene glycol) fumarate) hydrogels. J Control Release 91:299–313.

    PubMed  CAS  Google Scholar 

  41. Holland TA, Tessmar JKV, Tabata Y, Mikos AG (2003) Transforming growth factor-1 release from oligo (poly(ethylene glycol) fumarate) hydrogels in conditions that model the cartilage wound healing environment. J Control Release 94:101–114.

    Google Scholar 

  42. Hollinger JO (1983) Preliminary report on the osteogenic potential of a biodegradable copolymer of polyactide (PLA) and polyglycolide (PGA). J Biomed Mater Res 17:71–82.

    PubMed  CAS  Google Scholar 

  43. Horch RA, Shahid N, Mistry AS, Timmer MD, Mikos AG, Barron AR (2004) Nanoreinforcement of poly (propylene fumarate)-based networks with surface modified alumoxane nanoparticles for bone tissue engineering. Biomacromolecules 5:1990–1998.

    PubMed  CAS  Google Scholar 

  44. Huang W, Carlsen B, Wulur I, Rudkin G, Ishida K, Wu B, et al. (2004) BMP-2 exerts differential effects on differentiation of rabbit bone marrow stromal cells grown in two-dimensional and three-dimensional systems and is required for in vitro bone formation in a PLGA scaffold. Exp Cell Res 299: 325–334.

    PubMed  CAS  Google Scholar 

  45. Hunziker EB (1992) The different types of chondrocytes and their function in vivo. In: Adolphe M, ed. Biological Regulation of the Chondrocytes. CRC Press, Boca Raton, pp 1–31.

    Google Scholar 

  46. Ibusuki S, Fujii Y, Iwamoto Y, Matsuda T (2003) Tissue-engineered cartilage using an injectable and in situ gelable thermoresponsive gelatin: fabrication and in vitro performance. Tissue Eng 9:371–84.

    PubMed  CAS  Google Scholar 

  47. Iooss P, Le Ray AM, Grimandi G, Daculsi G, Merle C (2001) A new injectable bone substitute combining poly(epsilon-caprolactone) microparticles with biphasic calcium phosphate granules. Biomaterials 22:2785–2794.

    PubMed  CAS  Google Scholar 

  48. Ishaug-Riley SL, Crane-Kruger GM, Yaszemski MJ, Mikos AG (1998) Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers. Biomaterials 19:1405–1412.

    PubMed  CAS  Google Scholar 

  49. Jackson DW, Simon TM (1999) Tissue engineering principles in orthopaedic surgery. Clin Orthop 367S: 31–45.

    Google Scholar 

  50. Jeong B, Kim SW, Bae YH (2002) Thermosensitive sol-gel reversible hydrogels. Adv Drug Deliv Rev 54:37–51.

    PubMed  CAS  Google Scholar 

  51. Jo S, Shin H, Shung AK, Fisher JP, Mikos AG (2001) Synthesis and characterization of oligo(poly(ethylene glycol) fumarate) macromer. Macromolecules 34: 2839–2845.

    CAS  Google Scholar 

  52. Kang SI, Bae YH (2004) pH-dependent elution profiles of selected proteins in HPLC having a stationary phase modified with pH-sensitive sulfonamide polymers. J Biomater Sci Polym Ed 15:879–894.

    PubMed  CAS  Google Scholar 

  53. Karp JM, Sarraf F, Shoichet MS, Davies JE (2004) Fibrin-filled scaffolds for bone-tissue engineering: an in vivo study. J Biomed Mater Res 71A:162–171.

    CAS  Google Scholar 

  54. Kasper FK, Seidlits SK, Tang A, Crowther RS, Carney DH, Barry MA, et al (2005) In vitro release of plasmid DNA from oligo(poly(ethylene glycol) fumarate) hydrogels. J Control Release 104:521–539.

    PubMed  CAS  Google Scholar 

  55. Kisiday J, Jin M, Kurz B, Hung H, Semino C, Zhang S, et al. (2002) Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci USA 99:9996–10001.

    PubMed  CAS  Google Scholar 

  56. Kohn J, Langer R (1994) Bioresorbable and bioerodible materials. In: Ratner B, Hoffman A, Schoen F, Lemons J, eds. Biomaterials Science: An Introduction to Materials in Medicine. Hanser, New York, pp 65–73.

    Google Scholar 

  57. Kojima K, Ignotz RA, Kushibiki T, Tinsley KW, Tabata Y, Vacanti CA (2004) Tissue-engineered trachea from sheep marrow stromal cells with transforming growth factor [beta]2 released from biodegradable microspheres in a nude rat recipient. J Thorac Cardiovasc Surg 128:147–153.

    PubMed  CAS  Google Scholar 

  58. Leddy HA, Awad HA, Guilak F (2004) Molecular diffusion in tissue-engineered cartilage constructs: effects of scaffold material, time, and culture conditions. J Biomed Mater Res 70B:397–406.

    CAS  Google Scholar 

  59. Lee CH, Singla A, Lee Y (2001) Biomedical applications of collagen. Int J Pharm 221:1–22.

    PubMed  CAS  Google Scholar 

  60. Lee CR, Grodzinsky AJ, Spector M (2001) The effects of cross-linking of collagen-glycosaminoglycan scaffolds on compressive stiffness, chondrocytemediated contraction, proliferation and biosynthesis. Biomaterials 22:3145–3154.

    PubMed  CAS  Google Scholar 

  61. Lee JE, Kim KE, Kwon IC, Ahn HJ, Lee SH, Cho H, et al. (2004) Effects of the controlled-released TGF-[beta]1 from chitosan microspheres on chondrocytes cultured in a collagen/chitosan/glycosaminoglycan scaffold. Biomaterials 25:4163–4173.

    PubMed  CAS  Google Scholar 

  62. Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1880.

    PubMed  CAS  Google Scholar 

  63. Li WJ, Tuli R, Okafor C, Derfoul A, Danielson KG, Hall DJ, et al. (2005) A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials 26: 599–609.

    PubMed  CAS  Google Scholar 

  64. Lima EG, Mauck RL, Han SH, Park S, Ng KW, Ateshian GA, et al. (2004) Functional tissue engineering of chondral and osteochondral constructs. Biorheology 41:577–590.

    PubMed  Google Scholar 

  65. Lu L, Peter SJ, Lyman MD, Lai HL, Leite SM, Tamada JA, et al. (2000) In vitro degradation of porous poly(-lactic acid) foams. Biomaterials 21:1595–1605.

    PubMed  CAS  Google Scholar 

  66. Luginbuehl V, Meinel L, Merkle HP, Gander B (2004) Localized delivery of growth factors for bone repair. Eur J Pharm Biopharm 58:197–208.

    PubMed  CAS  Google Scholar 

  67. Lutolf MP, Hubbell JA (2003) Synthesis and physicochemical characterization of end-linked poly (ethylene glycol)-co-peptide hydrogels formed by Michael-type addition. Biomacromolecules 4:713–722.

    PubMed  CAS  Google Scholar 

  68. Ma Z, Gao C, Gong Y, Shen J (2005) Cartilage tissue engineering PLLA scaffold with surface immobilized collagen and basic fibroblast growth factor. Biomaterials 26:1253–1259.

    PubMed  CAS  Google Scholar 

  69. Mauck RL, Wang CC, Oswald ES, Ateshian GA, Hung CT (2003) The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading. Osteoarthritis Cartilage 11:879–890.

    PubMed  CAS  Google Scholar 

  70. Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21:2335–2346.

    PubMed  CAS  Google Scholar 

  71. Mikos AG, Bao Y, Cima LG, Ingber DE, Vacanti JP, Langer R (1993) Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation. J Biomed Mater Res 27:183–189.

    PubMed  CAS  Google Scholar 

  72. Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R, Winslow DN, et al. (1994) Preparation and characterization of poly(L-lactic acid) foams. Polymer 35:1068–1077.

    CAS  Google Scholar 

  73. Moreira PL, An YH, Santos AR Jr, Genari SC (2004) In vitro analysis of anionic collagen scaffolds for bone repair. J Biomed Mater Res 71B:229–237.

    CAS  Google Scholar 

  74. O’Driscoll SW (1999) Articular cartilage regeneration using periosteum. Clin Orthop 367S:S186–203.

    Google Scholar 

  75. Ouyang HW, Goh JC, Thambyah A, Teoh SH, Lee EH (2003) Knitted poly-lactide-co-glycolide scaffold loaded with bone marrow stromal cells in repair and regeneration of rabbit Achilles tendon. Tissue Eng 9:431–439.

    PubMed  CAS  Google Scholar 

  76. Pachence JM, Kohn J (1997) Biodegradable polymers for tissue engineering. In: Lanza R, Langer R, eds. Principles of Tissue Engineering. Academic Press, San Diego, pp 273–293.

    Google Scholar 

  77. Park H, Temenoff JS, Holland TA, Tabata Y, Mikos AG (2005) Delivery of TGF-β and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications. Biomaterials 2005: 26:7095–7103.

    PubMed  CAS  Google Scholar 

  78. Park SN, Park JC, Kim HO, Song MJ, Suh H (2002) Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopr opyl)carbodiimide cross-linking. Biomaterials 23: 1205–1212.

    PubMed  CAS  Google Scholar 

  79. Peppas NA, Langer R (1994) New challenges in biomaterials. Science 263:1715–1720.

    PubMed  CAS  Google Scholar 

  80. Podual K, Doyle FJ III, Peppas NA (2000) Preparation and dynamic response of cationic copolymer hydrogels containing glucose oxidase. Polymer 41:3975–3983.

    CAS  Google Scholar 

  81. Pulapura S, Kohn J (1992) Tyrosine-derived polycarbonates: backbone-modified “pseudo”-poly (amino acids) designed for biomedical applications. Biopolymers 32:411–417.

    PubMed  CAS  Google Scholar 

  82. Quick DJ, Anseth KS (2004) DNA delivery from photocrosslinked PEG hydrogels: encapsulation efficiency, release profiles, and DNA quality. J Control Release 96:341–351.

    PubMed  CAS  Google Scholar 

  83. Rice MA, Anseth KS (2004) Encapsulating chondrocytes in copolymer gels: bimodal degradation kinetics influence cell phenotype and extracellular matrix development. J Biomed Mater Res 70A:560–568.

    CAS  Google Scholar 

  84. Rupp S, Krauss PW, Fritsch EW (1997) Fixation strength of a biodegradable interference screw and a press-fit technique in anterior cruciate ligament reconstruction with a BPTB graft. Arthroscopy 13: 61–65.

    PubMed  CAS  Google Scholar 

  85. Shin H, Jo S, Mikos AG (2003) Biomimetic materials for tissue engineering. Biomaterials 24:4353–4364.

    PubMed  CAS  Google Scholar 

  86. Shin H, Quinten-Ruhe P, Mikos AG, Jansen JA (2003) In vivo bone and soft tissue response to injectable, biodegradable oligo(poly(ethylene glycol) fumarate) hydrogels. Biomaterials 24:3201–3211.

    PubMed  CAS  Google Scholar 

  87. Shin H, Zygourakis K, Farach-Carson MC, Yaszemski MJ, Mikos AG (2004) Modulation of differentiation and mineralization of marrow stromal cells cultured on biomimetic hydrogels modified with Arg-Gly-Asp containing peptides. J Biomed Mater Res 69A:535–543.

    CAS  Google Scholar 

  88. Suh JK, Matthew HW (2000) Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21:2589–2598.

    PubMed  CAS  Google Scholar 

  89. Tabata Y, Ikada Y (1988) Macrophage phagocytosis of biodegradable microspheres composed of L-lactic acid/glycolic acid homo-and copolymers. J Biomed Mater Res 22:837–858.

    PubMed  CAS  Google Scholar 

  90. Tamada J, Langer R (1992) The development of polyanhydrides for drug delivery applications. J Biomater Sci Polym Ed 3:315–353.

    PubMed  CAS  Google Scholar 

  91. Temenoff JS, Mikos AG (2000) Injectable biodegradable materials for orthopaedic tissue engineering. Biomaterials 21:2405–2412.

    PubMed  CAS  Google Scholar 

  92. Temenoff JS, Mikos AG (2000) Review: tissue engineering for regeneration of articular cartilage. Biomaterials 21:431–440.

    PubMed  CAS  Google Scholar 

  93. Temenoff JS, Park H, Jabbari E, Conway DE, Sheffield TL, Ambrose CG, et al. (2004) Thermally cross-linked oligo(poly(ethylene glycol) fumarate) hydrogels support osteogenic differentiation of encapsulated marrow stromal cells in vitro. Biomacromolecules 5:5–10.

    PubMed  CAS  Google Scholar 

  94. Temenoff JS, Park H, Jabbari E, Sheffield TL, LeBaron RG, Ambrose CG, et al. (2004) In vitro osteogenic differentiation of marrow stromal cells encapsulated in biodegradable hydrogels. J Biomed Mater Res 70A:235–244.

    CAS  Google Scholar 

  95. Temenoff JS, Shin H, Conway DE, Engel PS, Mikos AG (2003) In vitro cytotoxicity of redox radical initiators for cross-linking of oligo(poly(ethylene glycol) fumarate) macromers. Biomacromolecules 4:1605–1613.

    PubMed  CAS  Google Scholar 

  96. Temenoff JS, Steinbis ES, Mikos AG (2004) Biodegradable scaffolds. In: Goldberg V, Caplan A, eds. Orthopedic Tissue Engineering: Basic Science and Practice. Marcel Decker, New York, pp 77–103.

    Google Scholar 

  97. Thornton AJ, Alsberg E, Albertelli M, Mooney DJ (2004) Shape-defining scaffolds for minimally invasive tissue engineering. Transplantation 77:1798–1803.

    PubMed  CAS  Google Scholar 

  98. Timmer MD, Carter C, Ambrose CG, Mikos AG (2003) Fabrication of poly(propylene fumarate)-based orthopaedic implants by photo-crosslinking through transparent silicone molds. Biomaterials 24:4707–4714.

    PubMed  CAS  Google Scholar 

  99. Tuli R, Nandi S, Li WJ, Tuli S, Huang X, Manner PA, et al. (2004) Human mesenchymal progenitor cellbased tissue engineering of a single-unit osteochondral construct. Tissue Eng 10:1169–1179.

    PubMed  CAS  Google Scholar 

  100. Vacanti JP, Langer R, Upton J, Marler JJ (1998) Transplantation of cells in matrices for tissue regeneration. Adv Drug Deliv Rev 33:165–182.

    PubMed  Google Scholar 

  101. Weiner S, Traub W (1992) Bone structure: from angstroms to microns. FASEB J 6:879–885.

    PubMed  CAS  Google Scholar 

  102. Williams CG, Kim TK, Taboas A, Maliak AN, Manson P, Elisseeff JH (2003) In vitro chondrogenesis of bone marrow-derived mesenchymal stem cells in a photopolymerizing hydrogel. Tissue Eng 9:679–688.

    PubMed  CAS  Google Scholar 

  103. Williamson AK, Chen AC, Sah RL (2001) Compressive properties and function-composition relationships of developing bovine articular cartilage. J Orthop Res 19:1113–1121.

    PubMed  CAS  Google Scholar 

  104. Yamamoto M, Takahashi Y, Tabata Y (2003) Controlled release by biodegradable hydrogels enhances the ectopic bone formation of bone morphogenetic protein. Biomaterials 24:4375–4383.

    PubMed  CAS  Google Scholar 

  105. Yamane S, Iwasaki N, Majima T, Funakoshi T, Masuko T, Harada K, et al. (2005) Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Biomaterials 26:611–619.

    PubMed  CAS  Google Scholar 

  106. Yaszemski MJ, Payne RG, Hayes WC, Langer R, Mikos AG (1996) In vitro degradation of a poly(propylene fumarate)-based composite material. Biomaterials 17:2127–2130.

    PubMed  CAS  Google Scholar 

  107. Zhang SM, Cui FZ, Liao SS, Zhu Y, Han L (2003) Synthesis and biocompatibility of porous nanohydroxyapatite/collagen/alginate composite. J Mater Sci Mater Med 14:641–645.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

Park, H., Temenoff, J.S., Mikos, A.G. (2007). Biodegradable Orthopedic Implants. In: Bronner, F., Farach-Carson, M.C., Mikos, A.G. (eds) Engineering of Functional Skeletal Tissues. Topics in Bone Biology, vol 3. Springer, London. https://doi.org/10.1007/978-1-84628-366-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-366-6_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-962-3

  • Online ISBN: 978-1-84628-366-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics